Carnivore, but some are herbivores
<span>Water is a polar molecule. If a solute dissolved in water is polar molecule, it will dissolve in water. If a solute dissolved in water is non-polar like oil it will not dissolve in water. Polar dissolves in polar.</span>
For the reactants,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +5
- The oxidation number of carbon = +3
For the products,
- The oxidation number of hydrogen = +1
- The oxidation number of oxygen = -2
- The oxidation number of arsenic = +3
- The oxidation number of carbon = +4
Here, arsenic (+5 to +3) and carbon (+3 to +4) are the only oxidation numbers changing.
Note that an increase in oxidation number means electrons are lost. Thus oxidation is occurring, and a decrease in oxidation number means electrons are being gained, and thus reduction is occurring.
Also, the compound that contains the element being oxidized is the reducing agent, and the compound that contains the element being reduced is the oxidizing agent.
So, the answers are:
name of the element oxidized: Carbon
name of the element reduced: Arsenic
formula of the oxidizing agent: 
formula of the reducing agent: 
Answer:
Oxygen supports combustion so a good method of testing for oxygen is to take a glowing splint and place it in a sample of gas, if it re-ignites the gas is oxygen. This is a simple but effective test for oxygen.
Explanation:
The effect of an insoluble impurity, such as sand, on the observed melting point of a compound would be none. It will not depress or elevate the melting point of the compound. Instead, it would affect the reading if you are trying to determine the melting point of the compound. This is because you might be missing the actual melting point of the compound since you will be waiting for the whole sample to liquify. You would not be able to determine exactly that temperature because of the insoluble impurity would have a different melting point than that of the compound.