Answer:
Because of the presence of air resistance
Explanation:
When an object is in free fall, ideally there is only one force acting on it:
- The force of gravity, W = mg, that pushes the object downward (m= mass of the object, g = acceleration of gravity)
However, this is true only in absence of air (so, in a vacuum). When air is present, it exerts a frictional force on the object (called air resistance) with upward direction (opposite to the motion of free fall) and whose magnitude is proportional to the speed of the object.
Therefore, it turns out that as the object falls, its speed increases, and therefore the air resistance acting against it increases too; as a result, the at some point the air resistance becomes equal (in magnitude) to the force of gravity: when this happens, the net acceleration of the object becomes zero, and so the speed of the object does not increase anymore. This speed reached by the object is called terminal velocity.
The height of the table above the ground is 0.45 m.
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Horizontal velocity (u) = 3 m/s
- Time (t) = 0.3 s
- Acceleration due to gravity (g) = 10 m/s²
- Height (h) =?
<h3>How to determine the height </h3>
The height of the table can be obtained by using the following formula:
h = ½gt²
h = ½ × 10 × 0.3²
h = 5 × 0.09
h = 0.45 m
Thus, the height of the table is 0.45 m
Learn more about motion under gravity:
brainly.com/question/26275209
Here it is given that initial speed of the package will be same as speed of the helicopter

displacement of the package as it is dropped on ground

acceleration is due to gravity

now by kinematics



by solving above equation we have

so it will take 5.2 s to reach the ground
1) newton of the surfaces in contact (the smoothness of the surfaces)
2) how hard the surfaces press together
Synodic month, also known as a lunar month.