1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
7

For a 3-Phase, Wye connected system the Line to Line Voltage measures 12,470 Volts, the Phase current measures 120 Amps.

Engineering
1 answer:
vladimir2022 [97]3 years ago
6 0

Answer:

A. 7199.55 volts

B. 120A

Explanation:

In this question we have the

line voltage = VLL = 12470volts

Phase current = Iph = 120 amps

A.)

We are to calculate the line-to-neutral/phase voltage here

VLL = √3VL-N

VL-N = VLL/√3

VL-N = 12470/√3

This gives a line to neutral phase/voltage of 7199.55 volts.

B.

We are to calculate the line current here:

In this connection, the line current and the phase current are equal

ILL = Iph = 120A

You might be interested in
The base class Pet has attributes name and age. The derived class Dog inherits attributes from the base class Pet class and incl
Nonamiya [84]

Answer:

Explanation:

class Pet:

   def __init__(self):

       self.name = ''

       self.age = 0

   def print_info(self):

       print('Pet Information:')

       print('   Name:', self.name)

       print('   Age:', self.age)

class Dog(Pet):

   def __init__(self):

       Pet.__init__(self)

       self.breed = ''

def main():

   my_pet = Pet()

   my_dog = Dog()

   pet_name = input()

   pet_age = int(input())

   dog_name = input()

   dog_age = int(input())

   dog_breed = input()

   my_pet.name = pet_name

   my_pet.age = pet_age

   my_pet.print_info()

   my_dog.name = dog_name

   my_dog.age = dog_age

   my_dog.breed = dog_breed

   my_dog.print_info()

   print('   Breed:', my_dog.breed)

main()

3 0
3 years ago
To assist in completing this question, you may reference the Animated Technique Video - MALDI-TOF Mass Spectroscopy. Complete th
a_sh-v [17]

Complete Question

The complete question is shown on the first uploaded image.

Answer:

The answer is shown on the second uploaded image

Explanation:

The explanation is also shown on the second uploaded image

3 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
A 03-series cylindrical roller bearing with inner ring rotating is required for an application in which the life requirement is
-BARSIC- [3]

Answer:

\mathbf{C_{10} = 137.611 \ kN}

Explanation:

From the information given:

Life requirement = 40 kh = 40 40 \times 10^{3} \ h

Speed (N) = 520 rev/min

Reliability goal (R_D) = 0.9

Radial load (F_D) = 2600 lbf

To find C10 value by using the formula:

C_{10}=F_D\times \pmatrix \dfrac{x_D}{x_o +(\theta-x_o) \bigg(In(\dfrac{1}{R_o}) \bigg)^{\dfrac{1}{b}}} \end {pmatrix} ^{^{^{\dfrac{1}{a}}

where;

x_D = \text{bearing life in million revolution} \\  \\ x_D = \dfrac{60 \times L_h \times N}{10^6} \\ \\ x_D = \dfrac{60 \times 40 \times 10^3 \times 520}{10^6}\\ \\ x_D = 1248 \text{ million revolutions}

\text{The cyclindrical roller bearing (a)}= \dfrac{10}{3}

The Weibull parameters include:

x_o = 0.02

(\theta - x_o) = 4.439

b= 1.483

∴

Using the above formula:

C_{10}=1.4\times 2600 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{1}{\dfrac{10}{3}}}

C_{10}=3640 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{3}{10}}

C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}

C_{10} = 30962.449 \ lbf

Recall that:

1 kN = 225 lbf

∴

C_{10} = \dfrac{30962.449}{225}

\mathbf{C_{10} = 137.611 \ kN}

7 0
3 years ago
why is the peak value of the rectified output less than the peak value of the ac input and by how much g
Bumek [7]

Answer:

The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Explanation:

This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.

Therefore this is the formula for Half wave rectifier

Vrms = Vm/2 and Vdc

= Vm/π:

Where,

Vrms = rms value of input

Vdc = Average value of input

Vm = peak value of output

Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.

5 0
3 years ago
Other questions:
  • In a simple ideal Rankine cycle, water is used as the working fluid. The cycle operates with pressures of 2000 psi in the boiler
    7·1 answer
  • What is Euler's equation?
    6·1 answer
  • The gas-turbine cycle of a combined gas–steam power plant has a pressure ratio of 8. Air enters the compressor at 290 K and the
    15·1 answer
  • A kite is an airfoil that uses the wind to produce a lift. Held in place by a string, a kite can remain aloft indefinitely. The
    9·1 answer
  • Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
    14·1 answer
  • Determine the design angle ϕ (0∘≤ϕ≤90 ∘) between struts AB and AC so that the 400 lb horizontal force has a component of 600 lb
    10·1 answer
  • All welding processes that take place without melting of the work pieces. a)- True b)-False
    15·1 answer
  • What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
    15·1 answer
  • An engine has been diagnosed with blowby.
    12·1 answer
  • Raw materials used of silicone rubber
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!