1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
15

Water is flowing into the top of an open cylindrical tank (which has a diameter D) at a volume flow rate of Qi and the water flo

ws out through a hole in the bottom at a rate of Qo. The tank is constructed from wood that is old and has become very porous so that water leaks out through the walls at a rate of q per unit of wetted surface area. The initial depth of the water in the tank is Z1. a) Derive an equation for the depth of water in the tank at any time.
b) If Qi = 10 gpm, Qo = 5 gpm, D = 5 ft, q = 0.1 gpm/ft2, and Z1 = 3 ft, is the level in the tank rising or falling?

Engineering
2 answers:
deff fn [24]3 years ago
8 0

Answer:

Z = 3 + 0.23t

The water level is rising

Explanation:

Please see attachment for the equation

podryga [215]3 years ago
3 0

Answer:

a) the expression is z=\frac{(Q_{1}-Q_{0})t  }{q\pi D+\frac{\pi }{4} D^{2} } +z_{1}

b) z = 0.00057t + 3

the water level in the tank is rising

Explanation:

a) Given

Q₁ = flow rate into the tank

Q₀ = flow rate out of the tank

q\frac{dA}{dt} = rate of water leakage

V = volume

\frac{dV}{dt} = rate of accumulation

the expression is

Q_{1} =Q_{0} +q\frac{dA}{dt} +\frac{dV}{dt} \\Q_{1} -Q_{0}=q\frac{d(\pi Dz)}{dt} +\frac{d(\frac{\pi }{4} D^{2}z) }{dt} \\(Q_{1} -Q_{0})dt=(q\pi D+\frac{\pi }{4} D^{2} )dz

we apply the integral on both sides

\int\limits^t_0 {(Q_{1} -Q_{0})dt=\int\limits^a_b {q\pi D+\frac{\pi }{4} D^{2} } \,  } \, dz

z=\frac{(Q_{1}-Q_{0})t  }{q\pi D+\frac{\pi }{4} D^{2} } +z_{1}

b) Replacing values in the expression

z=\frac{(0.022-0.011)t}{0.022*\pi *5+\frac{\pi }{4} *5^{2} } +3\\z=0.00057t+3

the water level in the tank is rising

You might be interested in
A cylindrical specimen of steel has an original diameter of 12.8 mm. It is tested in tension its engineering fracture strength i
Mama L [17]

Answer:

a) The ductility = -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) the true stress at fracture is 658.26 Mpa

Explanation:

Given that;

Original diameter d_{o} = 12.8 mm

Final diameter d_{f} = 10.7

Engineering stress  \alpha _{E} = 460 Mpa

a) determine The ductility in terms of percent reduction in area;

Ai = π/4(d_{o} )²  ; Ag = π/4(d_{f} )²

% = π/4 [ ( (d_{f} )² - (d_{o} )²) / ( π/4  (d_{o} )²) ]

= ( (d_{f} )² - (d_{o} )²) / (d_{o} )² × 100

we substitute

= [( (10.7)² - (12.8)²) / (12.8)² ] × 100

= [(114.49 - 163.84) / 163.84 ] × 100

= - 0.3012 × 100

= -30.12%

the negative sign means reduction

Therefore, there is 30.12% reduction

b) The true stress at fracture;

True stress  \alpha _{T} = \alpha _{E} ( 1 +  E_{E} )

E_{E}  is engineering strain

E_{E}  = dL / Lo

= (do² - df²) / df² = (12.8² - 10.7²) / 10.7² = (163.84 - 114.49) / 114.49

= 49.35 / 114.49  

E_{E} = 0.431

so we substitute the value of E_{E}  into our initial equation;

True stress  \alpha _{T} = 460 ( 1 +  0.431)

True stress  \alpha _{T} = 460 (1.431)

True stress  \alpha _{T} = 658.26 Mpa

Therefore, the true stress at fracture is 658.26 Mpa

6 0
2 years ago
A 3-phase , 1MVA, 13.8kV/4160V, 60 Hz, transformer with Y-Delta winding connection is supplying a3-phase, 0.75 p.u. load on the
Tanya [424]

Answer:

a) 23.89 < -25.84 Ω

b) 31.38 < 25.84 A

c) 0.9323 leading

Explanation:

A) Calculate the load Impedance

current on load side = 0.75 p.u

power factor angle = 25.84

I_{load} = 0.75 < 25.84°

attached below is the remaining part of the solution

<u>B) Find the input current on the primary side in real units </u>

load current in primary = 31.38 < 25.84 A

<u>C) find the input power factor </u>

power factor = 0.9323 leading

<em></em>

<em>attached below is the detailed solution </em>

8 0
2 years ago
An airliner is flying at 34,000 ft cruise altitude on a standard day. Calculate the pressure difference between the cabin and th
nadya68 [22]

Answer:

\Delta P=61,952.8\ lb/ft^2

Explanation:

Given

Airline flying at 34,000 ft.

Cabin pressurized to an altitude 8,000 ft.

We know that at standard condition ,density of air

\rho =0.074\ lb/ft^3

We know that pressure difference    

ΔP=ρ g ΔZ

Here ΔZ=34,000-8,000  ft

        ΔZ=26,000 ft

g= 32.2\ ft/s^2

ΔP=0.074 x 32.2 x 26,000

\Delta P=61,952.8\ lb/ft^2

So pressure difference will be \Delta P=61,952.8\ lb/ft^2.

7 0
3 years ago
QUESTION
Ymorist [56]
Torch body if I’m wrong I’m really sorry that’s what I got
3 0
3 years ago
Viteza unui mobil care se deplasează cu accelerație constantă crește de la 3,2 m/s la 5,2 m/s în timp de 8 s. Accelerația mobilu
Verizon [17]

Answer:

a=0.25\ m/s^2

Explanation:

Initial speed of the mobile = 3.2 m/s

Final speed of the mobile = 5.2 m/s

Time, t = 8 s

We need to find the acceleration of the mobile. It can be given by the change in velocity divided by time. So,

a=\dfrac{v-u}{t}\\\\a=\dfrac{(5.2-3.2)\ m/s}{8\ s}\\\\=0.25\ m/s^2

So, the acceleration of the mobile is 0.25\ m/s^2.

3 0
2 years ago
Other questions:
  • Write a grammar for a language whose sentences start with an even and non-zero number of x’s, end with an odd number of z’s, and
    11·1 answer
  • An insulated piston-cylinder device contains 5 L of saturated liquid water at a constant pressure of 175 kPa. Water is stirred b
    9·1 answer
  • suppose we number the bytes in a w-bit word from 0 (less significant) to w/8-1 (most significant). write code for the followign
    11·1 answer
  • A transmitter has an output power of 0.1mW while the fiber has coupling loss of 12dB, attenuation of
    11·1 answer
  • A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s
    14·1 answer
  • E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the read- and write-actions to the computation and show t
    12·1 answer
  • Importance of tillage​
    7·1 answer
  • What is the density of the mass of 24.0g and a volume of 6 ml?
    13·1 answer
  • What was the reason alloys were used instead of metals like copper, tin, or iron?
    11·1 answer
  • This acronym is a reminder of the most common types of hazards or injuries caused by electricity.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!