1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
2 years ago
8

I need help with this question

Engineering
1 answer:
Ad libitum [116K]2 years ago
5 0

Answer:

LOL where is the question, that u need help with?

Explanation:

You might be interested in
What is the resistance of a resistor if the current flowing through it is 3mA and the voltage across it is 5.3V?
Flura [38]

Answer: 1766.667 Ω = 1.767kΩ

Explanation:

V=iR

where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).

3mA = 0.003 A

Rearranging the equation, we get

R=V/i

Now we are solving for resistance. Plug in 0.003 A and 5.3 V.

R = 5.3 / 0.003

= 1766.6667 Ω

= 1.7666667 kΩ

The 6s are repeating so round off to whichever value you need for exactness.

6 0
1 year ago
A tension test is carried out on an Al alloy specimen which has an original diameter of 0.505 in and an original gauge length of
Contact [7]

Answer:

Detailed solution is given in attached image

5 0
3 years ago
In which situation is a are food service workers not required to wash their hands?
Margarita [4]

Answer:

when wearing gloves?

Explanation:

?

or when off duty

3 0
2 years ago
Read 2 more answers
Steam enters a two-stage adiabatic turbine at 8 MPa and 5008C. It expands in the first stage to a state of 2 MPa and 3508C. Stea
Nataly [62]

Answer:

1) The exergy of destruction is approximately 456.93 kW

2) The reversible power output is approximately 5456.93 kW

Explanation:

1) The given parameters are;

P₁ = 8 MPa

T₁ = 500°C

From which we have;

s₁ = 6.727 kJ/(kg·K)

h₁ = 3399 kJ/kg

P₂ = 2 MPa

T₂ = 350°C

From which we have;

s₂ = 6.958 kJ/(kg·K)

h₂ = 3138 kJ/kg

P₃ = 2 MPa

T₃ = 500°C

From which we have;

s₃ = 7.434 kJ/(kg·K)

h₃ = 3468 kJ/kg

P₄ = 30 KPa

T₄ = 69.09 C (saturation temperature)

From which we have;

h₄ = h_{f4} + x₄×h_{fg} = 289.229 + 0.97*2335.32 = 2554.49 kJ/kg

s₄ =  s_{f4} + x₄×s_{fg} = 0.94394 + 0.97*6.8235 ≈ 7.563 kJ/(kg·K)

The exergy of destruction, \dot X_{dest}, is given as follows;

\dot X_{dest} = T₀ × \dot S_{gen} = T₀ × \dot m × (s₄ + s₂ - s₁ - s₃)

\dot X_{dest} = T₀ × \dot W×(s₄ + s₂ - s₁ - s₃)/(h₁ + h₃ - h₂ - h₄)

∴ \dot X_{dest} = 298.15 × 5000 × (7.563 + 6.958 - 6.727 - 7.434)/(3399 + 3468 - 3138  - 2554.49) ≈ 456.93 kW

The exergy of destruction ≈ 456.93 kW

2) The reversible power output, \dot W_{rev} = \dot W_{} + \dot X_{dest} ≈ 5000 + 456.93 kW = 5456.93 kW

The reversible power output ≈ 5456.93 kW.

6 0
3 years ago
A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane-strain fracture tough
jeyben [28]

Complete question:

A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a plane strain fracture toughness of 98.9 MPa root m (90 ksi root in.) and a yield strength of 860 MPa (125,000 psi). The flaw size resolution limit of the flaw detection apparatus is 3.0 mm (0.12 in.). If the design stress is one-half of the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to detection.

Answer:

Since the flaw 17mm is greater than 3 mm the critical flaw for this plate is subject to detection

so that critical flow is subject to detection  

Explanation:

We are given:

Plane strain fracture toughness K = 98.9 MPa \sqrt{m}

Yield strength Y = 860 MPa

Flaw detection apparatus = 3.0mm (12in)

y = 1.0

Let's use the expression:

oc = \frac{K}{Y \sqrt{pi * a}}

We already know

K= design

a = length of surface creak

Since we are to find the length of surface creak, we will make "a" subject of the formula in the expression above.

Therefore

a= \frac{1}{pi} * [\frac{k}{y*a}]^2

Substituting figures in the expression above, we have:

= \frac{1}{pi} * [\frac{98.9 MPa \sqrt{m}} {10 * \frac{860MPa}{2}}]^2

= 0.0168 m

= 17mm

Therefore, since the flaw 17mm > 3 mm the critical flow is subject to detection  

3 0
3 years ago
Read 2 more answers
Other questions:
  • A pressure gage connected to a tank reads 50 psi at a location where the barometric reading is 29.1 inches Hg. Determine the abs
    6·1 answer
  • A large part in a turbine-generator unit operates near room temperature and is made of ASTM A470-8 steel ( ). A surface crack ha
    11·1 answer
  • How should employees talk to clients)
    9·1 answer
  • After a 65 newton weight has fallen freely from rest a vertical distance of 5.3 meters, the kinetic energy of the weight is
    12·1 answer
  • If my friend have the corona what do I do
    11·2 answers
  • Draw the sequence of BSTs that results when you insert the keys E, A, S, Y, Q, U, E, S, T, I, O, N, in that order into an initia
    10·1 answer
  • If you are involved in a collision and your vehicle is blocking the flow of traffic, you should
    5·1 answer
  • A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
    9·1 answer
  • a coil consists of 200 turns of copper wire and has a cross-sectional area of 0.8mm square . The mean length per turn is 80 cm a
    5·1 answer
  • Need help with these 3 ez questions pls help me will mark brainiest.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!