Answer:
See explaination
Explanation:
The Fourier transform of y(t) = x(t - to) is Y(w) = e- jwto X(w) . Therefore the magnitude spectrum of y(t) is given by
|Y(w)| = |X(w)|
The phase spectrum of y(t) is given by
<Y(w) = -wto + <X(w)
please kindly see attachment for the step by step solution of the given problem.
Answer:
Explanation:
find attached the solution to the question
Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons
Explanation:
Instantaneous center:
It is the center about a body moves in planer motion.The velocity of Instantaneous center is zero and Instantaneous center can be lie out side or inside the body.About this center every particle of a body rotates.
From the diagram
Where these two lines will cut then it will the I-Center.Point A and B is moving perpendicular to the point I.
If we take three link link1,link2 and link3 then I center of these three link will be in one straight line It means that they will be co-linear.
Answer:
(a)
<em>d</em>Q = m<em>d</em>q
<em>d</em>q = <em>d</em>T
= (T₂ - T₁)
From the above equations, the underlying assumption is that remains constant with change in temperature.
(b)
Given;
V = 2L
T₁ = 300 K
Q₁ = 16.73 KJ , Q₂ = 6.14 KJ
ΔT = 3.10 K , ΔT₂ = 3.10 K for calorimeter
Let be heat constant of calorimeter
Q₂ = ΔT
Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂
Q₁ - Q₂ = m ΔT
number of moles of n-C₆H₁₄, n = m/M
ρ = 650 kg/m³ at 300 K
M = 86.178 g/mol
m = ρv = 650 (2x10⁻³) = 1.3 kg
n = m/M => 1.3 / 0.086178 = 15.085 moles
Q₁ - Q₂ = m ' ΔT
= (16.73 - 6.14) / (15.085 x 3.10)
= 0.22646 KJ mol⁻¹ k⁻¹