Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
39.2 J
Explanation:
Step 1:
To find the potential energy the following formula is used.
Potential Energy = m × g × h
Where,
m = Mass
g = Acceleration due to gravity
h = Height
Step 2:
Here m = 4 kg, g = 9.8 m/s², h = 1 m
Potential Energy = ( 4 × 9.8 × 1)
= 39.2 J
Answer:
The Principle of Progression
(I searched it up since I never learned this)
Explanation:
The principle of progression states that a person should start slowly and increase exercise gradually. Since Mandy is just getting started on her exercise routine, she should begin with a few workouts over a large span of time, then work her way up so she can do more workouts in a shorter span of time.
Answer:
The bending occurs because light travels more slowly in a denser medium.
<span>D is at rest at the top of a 2 m high slope. The sled has a mass of 45 kg. The sled's potential energy is J?
</span>Answer: The sled's potential energy is 882 Joules