Answer:
It is a reactant, so it enters the plant.
Explanation:
Hello,
Photosynthesis is the natural process occurring when plants produce sugar and oxygen by using the visible light as the catalyst to undergo the following chemical reaction:

In such a way, it is seen that the carbon dioxide has the role of reactant as it is used by the plant, that is, it enters the plant to allow the photosynthesis to be carried out.
Best regards.
Answer:
-43.3 °C
Explanation:
To find the temperature, you need to use the Ideal Gas Law equation. The equation looks like this:
PV = nRT
In this formula,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Law constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
By plugging the given values into the equation and simplifying, you can find the temperature. After you get a temperature, you need to convert it into Celsius.
P = 2.88 atm R = 0.08206 atm*L/mol*K
V = 3.76 L T = ? K
n = 0.574 moles
PV = nRT
(2.88 atm)(3.76 L) = (0.574 moles)(0.08206 atm*L/mol*K)T
10.8288 = (0.04710244)T
230. K = T
Kelvin - 273.15 = Celsius
230 K - 273.15 = -43.3 °C
use the equation q=mcΔt. convert 13 mg to g. so it becomes .013g which will be the mass. C is specific heat of water which is always 4.184. Delta t is 75-1 which is 74. (.013)(4.184)(74) = 4.025
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf