Hi there!
On a level road:
∑F = Ff (Force due to friction)
The net force is the centripetal force, so:
mv²/r = Ff
Rewrite the force due to friction:
mv²/r = μmg
Cancel out the mass:
v²/r = μg
Solve for v:
v = √rμg
v = √(25)(9.81)(0.8) = 14.01 m/s
Answer:
Answer:
Speed of the wave in the string will be 3.2 m/sec
Explanation:
We have given frequency in the string fixed at both ends is 80 Hz
Distance between adjacent antipodes is 20 cm
We know that distance between two adjacent anti nodes is equal to half of the wavelength
So \frac{\lambda }{2}=20cm
2
λ
=20cm
\lambda =40cmλ=40cm
We have to find the speed of the wave in the string
Speed is equal to v=\lambda f=0.04\times 80=3.2m/secv=λf=0.04×80=3.2m/sec
So speed of the wave in the string will be 3.2 m/sec
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data: True.
<h3>What is machine learning?</h3>
Machine learning (ML) is also known as artificial intelligence (AI) and it can be defined as a subfield in computer science which typically focuses on the use of computer algorithms, data-driven techniques (methods) and technologies to develop a smart computer-controlled robot that has the ability to automatically perform and manage tasks that are exclusively meant for humans or solved by using human intelligence.
In Machine learning (ML), data-driven techniques (methods) are used to learn source ranges directly from observed acoustic data in a bid to proffer solutions to source localization in ocean acoustics.
In conclusion, a normalized sample covariance matrix (SCM) is constructed and used as the input, especially after pre-processing the pressure that's received by a vertical linear array in Machine learning (ML).
Read more on machine learning here: brainly.com/question/25523571
#SPJ1
<span>B. It stays the same</span>