Answer:
K =6.697 Kg/s²
Explanation:
Given:
delta m =41 g = 0.041 kg
delta x = 6cm = 0.06m
g = 9.8 m/s²
according to the given formula
K = delta m g /delta x
K = (0.041 kg × 9.8 m/s²) / 0.06m
K =6.697 Kg/s²
The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1
Answer:
In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.
Explanation:
Answer:
<em>Earth's gravity pulls air as close to the surface as possible. ... As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level. This is what meteorologists and mountaineers mean by "thin air." Thin air exerts less pressure than air at a lower altitude.</em>
Answer:
(a) 9.36 kHz
(b) 3.12 kHz
Explanation:
(a)
V = speed of sound
= speed of airplane = (0.5) V
f = actual frequency of sound emitted by airplane = 4.68 kHz = 4680 Hz
f' = Frequency heard by the stationary listener
Using Doppler's effect


f' = 9360 Hz
f' = 9.36 kHz
(b)
V = speed of sound
= speed of airplane = (0.5) V
f = actual frequency of sound emitted by airplane = 4.68 kHz = 4680 Hz
f' = Frequency heard by the stationary listener
Using Doppler's effect


f' = 3120 Hz
f' = 3.12 kHz