Answer:
Objective: It is raining. Subjective: I love the rain!
Explanation:
Anything objective sticks to the facts, but anything subjective has feelings. Objective and subjective are opposites.
(Hope this helps can I pls have brainlist (crown)☺️)
L = r x p = rmv = mr²ω
L = 0.25 x 0.75² x 12.5 = 1.758
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
The value of the centripetal forces are same.
Explanation:
Given:
The masses of the cars are same. The radii of the banked paths are same. The weight of an object on the moon is about one sixth of its weight on earth.
The expression for centripetal force is given by,

where,
is the mass of the object,
is the velocity of the object and
is the radius of the path.
The value of the centripetal force depends on the mass of the object, not on its weight.
As both on moon and earth the velocity of the cars and the radii of the paths are same, so the centripetal forces are the same.
1. Most PE, because PE is directly proportional to distance (height)
Height: 100 meters
Speed: 0 mph
2. Most KE, because KE is directly proportional to speed
Height: 10 meters
Speed: 40 mph
3. Most TE, average KE
Height: 10 meters
Speed: 40 mph
4. The skater gains thermal energy as she goes down the slope, because the speed of the skater increases, so it increases the total kinetic energy of the particles, and makes them vibrate faster, resulting in a higher temperature.