Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

The second option rolling friction
The answer is true, is called Thermal pollotion:).
Answer:
Solution given:
No of waves[N] =20crests & 20 troughs
=20waves
Time[T]=4seconds
distance[d]=3cm=0.03m
Now
<u>Wave</u><u> </u><u>length</u><u>=</u>3cm=3 × 
<u>Frequency</u>=
=
=5Hertz
and
Wave speed:wave length×frequency=3 ×
×5=1.5 ×
.
Answer:
6.25 m/s
Explanation:
mass of man (m1) = 80 kg
mass of boy (m2) = 20 kg
mass of man and boy after collision (m12)= 20 + 80 = 100 kg
velocity of man and boy after collision (v) = 2.5 m/s
angle θ = 60 °
How fast was the boy moving just before the collision
?
- From the diagram attached, the first image shows the man and the boys motion while the second diagram shows their motion rearranged to form a triangle. With the momentum of the man and the boy forming the sides of the triangle.
- M₁₂ = total momentum after collision = m12 x v = 100 x 2.5 = 250
- Mboy = momentum of the boy before collision = m2 x Velocity of boy
- Mman = momentum of the man before collision = m1 x velocity of man
- from the triangle, cos θ =

cos 60 = 
Mboy = 250 x cos 60 = 125
- recall that momentum of the boy (Mboy) also = m2 x Velocity of boy
therefore
125 = 20 x velocity of boy
velocity of boy = 125 / 20 = 6.25 m/s