Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)
Answer:
I don't have the answer but...
Explanation:
A variable is a quantity that may change within the context of a mathematical problem or experiment. Typically, we use a single letter to represent a variable. The letters x, y, and z are common generic symbols used for variables.
Answer:
Explanation:
Remark
If both are trying to get the box into storage and they can only use lifting to do it, then Jude won't be able to do it. This assumes they cannot slide the boxes. Jude is not using enough force to overcome gravity so the box will just sit.
On the other hand Jamel is putting enough force to not only lift the box but it will move upwards against gravity. If we ignore that fact, then Jamel will get his box into storage.
Answer: A
use the formula: v^2=(3kT)/m
Where:
<em>v is the velocity of a molecule</em>
<em>k is the Boltzmann constant (1.38064852e-23 J/K)</em>
<em>T is the temperature of the molecule in the air</em>
<em>m is the mass of the molecule</em>
For an H2 molecule at 20.0°C (293 K):
v^2 = 3 × 1.38e-23 J/K × 293 K / (2.00 u × 1.66e-27 kg/u)
v^2 = 3.65e+6 m^2/s^2
v = 1.91e+3 m/s
For an O2 molecule at same temp.:
v^2 = 3 × 1.38e-23 J/K × 293 K / (32.00 u × 1.66e-27 kg/u)
v^2 = 2.28e+5 m^2/s^2
v = 478 m/s
Therefore, the ratio of H2:O2 velocities is:
1.91e+3 / 478 = 4.00