Answer:
h = 
Step-by-step explanation:
Formula for the area of a trapezoid is,
Area (A) = 
Here b and c are the bases and 'h' is the height of the trapezoid.
2A = ![2[\frac{1}{2}(b+c)h]](https://tex.z-dn.net/?f=2%5B%5Cfrac%7B1%7D%7B2%7D%28b%2Bc%29h%5D)
2A = (b + c)h

Therefore, formula for the height of the trapezoid will be,
h = 
Answer:
C
Step-by-step explanation:
You need to convert it into a whole number
Answer:
c is the correct option
Step-by-step explanation:
from,
f'(x) = h >0 <u>f</u><u>(</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u>
h
f(x) = - √2x
f(x + h) = - √(2x + h)
f'(x) = h>0 <u>-</u><u>√(2x + h) - √2x</u>
h
rationalize the denominator
= h>0 <u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>+</u><u> </u><u>√</u><u>2</u><u>x</u><u> </u><u> </u><u>(</u><u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>√</u><u>2</u><u>x</u><u>)</u>
h (-√(2x + h) - √2x)
= h>0 <u>4</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>h</u><u> </u><u>-</u><u> </u><u>4</u><u>x</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x + h) -√2x)
= h>0 <u>2</u><u>h</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x+h) - √2x)
= h>0 <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
-√(2x+h) - √2x
Answer:
-5/4
Step-by-step explanation:
4x=-5
x=-5/4