Here we have to draw the four isomers of the compound 3-bromo-4-fluorohexane.
The four isomers of the compound is shown in the figure.
In an organic molecule the chiral -C center is that where four (4) different groups are present. In 3-bromo-4-fluorohexane the 3 and 4 positions are chiral centers. The possible isomers of a molecule can be obtained from the formula 2n. As here 2 chiral centers are present thus number of stereoisomers will be 2×2 = 4.
The four different isomers as shown in the figure are 3R-, 4R-; 3S-, 4S; 3R, 4S and 3S-, 4R- 3-bromo-4-fluorohexane.
In the 3-bromo-4-fluorohexane the functional groups are -Br, C₂H₅, -C₃H₆F and -H for 3-position and -F, -C₂H₅, -C₃H₆ and -H for 4-position respectively.
The priority of the -3 position will be Br > C₃H₆F > C₂H₅ > H and for -4 position F > C₃H₆Br > C₂H₅ > H. If the rotation from the higher priority group to lower is clockwise and anticlockwise then the S- and R- notation are used respectively. However if the -H atom is present at the horizontal position then the notation will be reverse.
Thus the four isomers of the compound is shown.
The wheels will be completely used up and it is the limiting reactant in this case.
<h3>What is a limiting reactant?</h3>
The limiting reactant is the reactant that is completely used up in a reaction, and thus determines when the reaction stops.
- 60 breaks will be used for 30 engines and 30 body frame
- 80 wheels will be used for 20 engines and 20 body frame
- 64 headlights will be used for 32 engines and 32 body frame
The wheels will be completely used up and it is the limiting reactant in this case.
Learn more about limiting reactants here: brainly.com/question/14222359
#SPJ1
to have the closest number rounded up