<u>Answer:</u> The mass of solid NaOH required is 80 g
<u>Explanation:</u>
Equivalent weight is calculated by dividing the molecular weight by n factor. The equation used is:

where,
n = acidity for bases = 1 (For NaOH)
Molar mass of NaOH = 40 g/mol
Putting values in above equation, we get:

Normality is defined as the umber of gram equivalents dissolved per liter of the solution.
Mathematically,

Or,
......(1)
We are given:
Given mass of NaOH = ?
Equivalent mass of NaOH = 40 g/eq
Volume of solution = 400 mL
Normality of solution = 5 eq/L
Putting values in equation 1, we get:

Hence, the mass of solid NaOH required is 80 g
11. ionic charge +1, helium.
12. ionic charge 2-, neon.
13. ionic charge 3+, neon.
Answer: The strange liquid would float to the top of a cup of water.
Explanation:
Density = Mass/Volume
Strange Liquid Density = 70g/84mL
Strange Liquid Density = 0.833g/mL
Density of water in g/mL = 1 g/mL
Strange Liquid Density < Water Density
A substance with a lower density would be suspended above a substance with a higher density.
Since the density of the strange liquid is less than that of water, it would float to the top of a cup of water.
Answer:

Explanation:
1. Mass of acetylsalicylic acid (ASA)

2. Moles of ASA
HC₉H₇O₄ =180.16 g/mol

3. Concentration of ASA

4. Set up an ICE table

5. Solve for x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}]\text{A}^{-}]} {\text{[HA]}} = 3.33 \times 10^{-4}\\\\\dfrac{x^{2}}{0.01757 - x} = 3.33 \times 10^{-4}\\\\\textbf{Check that }\mathbf{x \ll 0.01757}\\\\\dfrac{ 0.01757 }{3.33 \times 10^{-4}} = 53 < 400\\\\\text{The ratio is less than 400. We must solve a quadratic equation.}\\\\x^{2} = 3.33 \times 10^{-4}(0.01757 - x) \\\\x^{2} = 5.851 \times 10^{-6} - 3.33 \times 10^{-4}x\\\\x^{2} + 3.33 \times 10^{-4}x - 5.851 \times 10^{-6} = 0](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%5Ctext%7BA%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.01757%20-%20x%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctextbf%7BCheck%20that%20%7D%5Cmathbf%7Bx%20%5Cll%200.01757%7D%5C%5C%5C%5C%5Cdfrac%7B%200.01757%20%7D%7B3.33%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%2053%20%3C%20400%5C%5C%5C%5C%5Ctext%7BThe%20ratio%20is%20less%20than%20400.%20We%20must%20solve%20a%20quadratic%20equation.%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%280.01757%20-%20x%29%20%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%205.851%20%5Ctimes%2010%5E%7B-6%7D%20-%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%5C%5C%5C%5Cx%5E%7B2%7D%20%2B%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%20-%205.851%20%5Ctimes%2010%5E%7B-6%7D%20%3D%200)
6. Solve the quadratic equation.


7. Calculate the pH
![\rm [H_{3}O^{+}]= x \, mol \cdot L^{-1} = 0.002258 \, mol \cdot L^{-1}\\\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.002258} = \mathbf{2.65}\\\text{The pH of the solution is } \boxed{\textbf{2.65}}](https://tex.z-dn.net/?f=%5Crm%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D%20x%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%20%3D%200.002258%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%5C%5C%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.002258%7D%20%3D%20%5Cmathbf%7B2.65%7D%5C%5C%5Ctext%7BThe%20pH%20of%20the%20solution%20is%20%7D%20%5Cboxed%7B%5Ctextbf%7B2.65%7D%7D)