Answer:
to make calculation more easy to get
Explanation:
if you are using chart or calculate Thermodynamic problems you will not never solve this problem with out using data table for thermodynamic
<span>The answer is C: water is drawn up a straw by cohesion and adhesion. Water molecules stick to one another and the walls of the straw, just like in a capillary.
Cohesion is the attractive force between like materials (between water
molecules).
Adhesion is the attractive force between twounlike materials (such as between
water and a solid container).
Capillary action is the tendency of a liquid to rise innarrow tubes or small openings as a result of adhesion and cohesion.
The liquid water molecules bind to the straw—a process known as adhesion. In the narrow space of the straw, the interaction of cohesion and adhesion causes theliquid to be drawn upward in the straw.</span>
Fossil fuels burn: cause
Glaciers melt: effect (mostly; the melting ice caps are a positive feedback loop of sorts)
Climates change: effect
Rain falls in unusual amounts: effect
Cities become more industrialized: cause
Human population grows worldwide: cause
Answer:
<em>The first choice (32m/s) is the closest to the answer</em>
Explanation:
The magnitude of a vector is the distance between the initial and the end point of the vector.
Being Vx and Vy the horizontal and vertical components of the vector V respectively, the magnitude of V is calculated as:

The components of the velocity of the physics student's projectile launcher are Vx=28 m/s and Vy=15 m/s.
Calculate the magnitude of the velocity:




The first choice (32m/s) is the closest to the answer
The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²