Answer:
The number of electrons in a neutral atom is equal to the number of protons. The mass number of the atom (M) is equal to the sum of the number of protons and neutrons in the nucleus. The number of neutrons is equal to the difference between the mass number of the atom (M) and the atomic number (Z).
Explanation:
HOPE THIS HELP
PICK ME AS THE BRAINLIEST
O,P,Ge ranked from atomic radius
The number of atoms of each element :
C : 1 atom
H : 3 atoms
Br = 1 atom
<h3>Further explanation</h3>
Given
Bromomethane-CH₃Br
Required
The number of atoms
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of atoms in a compound is generally indicated as a subscript after the atom
C : 1 atom
H : 3 atoms
Br = 1 atom
Total 5 atoms
Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.
Answer:
Uranium-233- fission
Plutonium-239- fission
Plutonium-241- fission
Hydrogen-3 fusion
Hydrogen-1 fusion
Helium-3 fusion
Explanation:
In nuclear fission, heavy nuclear disintegrate into smaller nuclei when bombarded with particles such as neutrons. Fission reaction is common among nuclei having a high atomic number such as plutonium and uranium.
Fusion occurs between two light nuclei such as hydrogen or helium. It involves the combination of two lighter elements to give a heavier element with the release of tremendous amount of energy.