<span>S= 1/2(V f + V I )t solve for V f
2s/t=Vf+Vi
</span><span>2s/t-Vi=Vf</span>
We know, Frequency = speed / wavelength
f = 341 / 0.8
f = 426.25 Hz
In short, Your Answer would be 426.25 Hz
Hope this helps!
Answer:
These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward
In electrical circuit, this arrangement is called a R-L series circuit. It is a circuit containing elements of an inductor (L) and a resistor (R). Inductance is expressed in units of Henry while resistance is expressed in units of ohms. The relationship between these values is called the impedance, denoted as Z. Its equation is
Z = √(R^2 + L^2)
Z = √((1.24×10^3 ohms)^2 + (6.95×10^-6 H)^2)
Z = 1,240 ohms
The unit for impedance is also ohms. Since the circuit is in series, the voltage across the inductor and the resistor are additive which is equal to 12 V. Knowing the impedance and the voltage, we can determine the maximum current.
I = V/Z=12/1,240 = 9.68 mA
But since we only want to reach 73.6% of its value, I = 9.68*0.736 = 7.12 mA. Then, the equation for R-L circuits is

, where τ = L/R = 6.95×10^-6/1.24×10^3 = 5.6 x 10^-9
Then,
t = 7.45 nanosecondsPart B.) If t = 1.00τ, then t/τ = 1. Therefore,
I = 6.12 mA
Answer:
The object will likely start moving with a nonzero acceleration.