P1 and P2 are the pressures, and V1 and V2 are the volumes. So you take the first pressure and volume you are given and place them into the equation P1V1 so the first part of the equation would be 101000*0.5 = P2V2. You then rearrange the equation to find what you want, in this instance you would do 50500/0.25 = P2... therefore P2 = 2020000Pa or 2.02*10^6Pa
If the distance between two objects decrease and the masses of the objects remain the same, then the force of gravity between the two objects
<u>Answer:</u>
increases
Explanation:
The formula of gravitational force is given as:
F=G Mm/r^2
G = gravitational constant
M, m = Masses of two different objects in which the force is acting.
r = distance between both the objects.
As we can see from the formula that the force of gravity is inversely proportional to the square of the distance between both objects.
When the distance between both objects with the same masses decreases the gravitational force between them increases. Hence the correct answer is option B.
Illamends had the exact same answer from a similar question. Credit goes to her
Answer:
77362.56 J
163730.28571 J
Explanation:
A = Area = 25 mm²
l = Length = 300 mm
K = Constant = 
= Heat transfer factor = 0.75
= Melting factor = 0.63
T = Melting point of low carbon steel = 1760 K
Volume of the fillet would be

The unit energy for melting is given by

Heat would be

Heat required to weld is 77362.56 J
Amount of heat generation is given by

The heat generated at the welding source is 163730.28571 J
Answer:
The motion of the ball relative to the ground is stationary
The motion of the ball relative to the wagon is backwards
Explanation:
To describe the motion of the ball relative to the ground, we note that
Assuming the ball is perfectly round and rotate freely, then we have
Force on the ball due to motion of the wagon = 0 N,
Then by the law of motion, an object will remain at rest when no force is applied to it
Therefore, apart from rotation of the ball, it will remain no displacement relative to the ground.
The motion of the ball relative to the wagon
Relative to the wagon, the ball appears to be moving in the opposite direction to the wagon, that is backwards.
To calculate the length of the wire, we use formulas,
(A)
(B)
Here, R is the resistance of the wire, I is the current flows through wire and V is potential difference. A is cross sectional area of wire and
is the density of copper wire and is value,
.
Given 
Substituting the values of I and V in equation (A ) we get,

Now from equation (B),

Therefore,

Thus the length of the copper wire is 177.9 m.