Answer: 11 km/h at 339° compass
Explanation:
A sees B moving south at 0 km/h
A is moving north at 12cos30 = 10.392 km/h
Therefore B must be moving north at 10.392 k/h
A is moving east at 12sin30 = 6 km/h
B appears to be moving west at 10 km/h
Therefore B must be moving west at 10 - 6 = 4 km/h
B is moving v = √(4² + 10.392²) = 11.135... 11 km/h
θ = arctan( -4 / 10.392) = -21.05 = 339°
The answer would be E7. Galaxies categorized as E0 look to
be nearly perfect, while those registered as E7 seem much extended than they
are widespread. It is worth noting, though, that a galaxy's look is connected
to how it lies on the sky when viewed from Earth. An E7 galaxy is very long and
thin or the flattest of them all.
Explanation:
There are three forces on the bicycle:
Reaction force Rp pushing up at P,
Reaction force Rq pushing up at Q,
Weight force mg pulling down at O.
There are four equations you can write: sum of the forces in the y direction, sum of the moments at P, sum of the moments at Q, and sum of the moments at O.
Sum of the forces in the y direction:
Rp + Rq − (15)(9.8) = 0
Rp + Rq − 147 = 0
Sum of the moments at P:
(15)(9.8)(0.30) − Rq(1) = 0
44.1 − Rq = 0
Sum of the moments at Q:
Rp(1) − (15)(9.8)(0.70) = 0
Rp − 102.9 = 0
Sum of the moments at O:
Rp(0.30) − Rq(0.70) = 0
0.3 Rp − 0.7 Rq = 0
Any combination of these equations will work.
Answer:
i believe it is 5
Explanation:
because if it moves at 100 miles per hour after 5 hours you will have 500 miles
because 5 multiplied by 100 equals 500