The second answer is not a characteristic because compounds don’t vary from sample to sample. For example NaCl (table salt) is indistinguishable from sample to sample.
Answer:
A) Mass = 32 g of KCl
Explanation:
Given data:
Mass of potassium chloride produced = ?
Mass of potassium chlorate = 52 g
Solution:
Chemical equation:
2KClO₃ → 2KCl + 3O₂
Number of moles of KClO₃:
Number of moles = mass/molar mass
Number of moles = 52 g/ 122.55 g/mol
Number of moles = 0.424 mol
Now we will compare the moles of KClO₃ and KCl
KClO₃ : KCl
2 : 2
0.424 : 0.424
Mass of KCl:
Mass = number of moles × molar mass
Mass = 0.424 mol × 74.55 g/mol
Mass = 32 g
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs