Answer: If you use a very small resistance AND the circuit design is such that the voltage drop is across the resistance of the heating-wire-circuit, [nothing else in the circuit is limiting current flow] you will get more heating. That's what we have in a heat anticipator internal-nichrome-wire-heater device.
Explanation:
Answer:
30.96 m
Explanation:
If the particle has a lifetime of 129 ns as measured by observer A, and has a speed of 0.8c as measured by observer A, the distance between the markers will be:
d = v * Δt
v = 0.8*c = 0.8 * 3e8 = 2.4e8
Δt = ζ = 129 ns = 1.29e-7 s
d = 2.4e8 * 1.29e-7 = 30.96 m
This is the distance as measured by observer A.
Answer:
what's your problem. How may I help you Buddy
Answer:
The answer to your question is a = 0.25 m/s²
Explanation:
Data
mass = m = 400 kg
Force = F = 100 N
acceleration = a = ? m/s²
Process
To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.
Formula
F = ma
solve for a
a = 
Substitution

Simplification and result
a = 0.25 m/s²