Answer:
It will take both pumps 3.08 hours to fill the tank working together.
Explanation:
Pump A can fill the tank in 5 hours. Assuming that the pump gives out a steady flow of water, in one hour, pump A can fill 1/5th of the tank. Similarly, pump B in an hour, fills up 1/8th of the tank.
We must add up these two values, in order to find how much of the tank the two pumps can fill up together in one hour.
1/5 +1/8 =13/40
So 13/40 of the tank is filled in an hour. We need to find how many hours it will take for the entire tank to be filled. To do so, divide 40 by 13. This gives:
3.08 hours to fill up the tank.
ANSWER:
5
Explanation:
Because they are elven in numbers
If you decrease the pressure of a fixed amount of gas, its volume will increase.
The image is missing (however it's not necessary to solve the problem).
The correct answer is A) decreases, because the gravitational force is inversely proportional to the square of the distance. In fact, the magnitude of the gravitational force between two object of mass M and m, at a distance d one from each other, is

where G is the gravitational constant. As can be seen from the formula, if the distance d between the two object increases, the intensity of the force decreases.
The correct answer is:
<span>The rate at which a waves energy flows through a given unit of area
In fact, light intensity is defined as the light power per unit of area:
</span>

<span>but the power is the energy carried by the light per unit of time:
</span>

<span>this means that the intensity can be rewritten as
</span>

<span>
So, it's basically the rate of energy (per unit of time) through a given surface.</span>