Answer:
Aphelion: 6404 W/m2
Perihelion: 14978 W/m2
Explanation:
The solar energy flux depends on the solar power output divided by the surface of a sphere with a radius equal to the distance to the Sun.

The distances we need are the aphelion and perihelion of Mercury.
Planetary orbits are ellipses. In an ellipse the eccentricity is related to linear eccentricity and the length of the semi major axis:

Where
e: eccentricity
c: linear eccentricity
a: semi major axis
The linear eccentricity is equal to the distance of the focus of the center of the ellipse.

a = 0.39 AU = 5.83e10 m

In planetary orbits the Sun is in one of the fucuses. With this we can calculate the prihelion and aphelion as:
Ap = a + c = 5.83e10 + 1.22e10 = 7.05e10 m
Pe = a - c = 5.83e10 - 1.22e10 = 4.61e10 m
And the solar energy fluxes will be:


Yeah yeah I just got a hold of you and I saw that you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job and I thought you were doing a good job.
Answer:
2.45 m/s
Explanation:
kinetic energy = 1/2 * m * v^2
then, 0.5 * 2500 * x^2 = 0.5 * 67 * 15^2
by solving for x, X = 2.45 m/s
The answer is A. <span> A flow of positive and negative charges. </span>
The mass of the ball is 6.67 kg
Explanation:
The momentum of an object is given by:

where
p is the momentum
m is the mass of the object
v is its velocity
It must be noted that momentum is a vector quantity, so it has both magnitude and direction (but here only the magnitude is given).
For the ball in this problem, we have:
v = 1.5 m/s is its velocity
p = 10.0 kg m/s is its momentum
Solving the formula for m, we find the mass of the ball:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly