1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
15

True or false, russian twists focus to strengthen the latissimus dorsi

Physics
2 answers:
Oliga [24]3 years ago
5 0
The answer is true hope that helped!!
kirza4 [7]3 years ago
5 0
The answer is true hope this helped you
You might be interested in
A discus thrower turns with angular acceleration of 50 rad/s2, moving the discus in a circle of radius 0.80m. Find the radial an
anyanavicka [17]

Answer:

The value of tangential acceleration \alpha_{t} =  40 \frac{m}{s^{2} }

The value of radial acceleration \alpha_{r} = 80 \frac{m}{s^{2} }

Explanation:

Angular acceleration = 50 \frac{rad}{s^{2} }

Radius of the disk = 0.8 m

Angular velocity = 10 \frac{rad}{s}

We know that tangential acceleration is given by the formula \alpha_{t} = r \alpha

Where r =  radius of the disk

\alpha = angular acceleration

⇒ \alpha_{t} = 0.8 × 50

⇒ \alpha_{t} = 40 \frac{m}{s^{2} }

This is the value of tangential acceleration.

Radial acceleration is given by

\alpha_{r} = \frac{V^{2} }{r}

Where V = velocity of the disk = r \omega

⇒ V = 0.8 × 10

⇒ V = 8 \frac{m}{s}

Radial acceleration

\alpha_{r} = \frac{8^{2} }{0.8}

\alpha_{r} = 80 \frac{m}{s^{2} }

This is the value of radial acceleration.

7 0
3 years ago
Light is shone on a diffraction grating
Pani-rosa [81]

Answer:

    λ = 482.05 nm

Explanation:

The diffraction phenomenon and the diffraction grating is described by the expression

         d sin θ = m λ

where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction

in this case they indicate the distance between slits, the angle and the order of diffraction

         λ = \frac{d sin \theta }{m}d sin θ / m

let's calculate

         λ = 1.00 10⁻⁶ sin 74.6 / 2

         λ = 4.82048 10⁻⁷ m

Let's reduce to nm

         λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)

         λ = 482.05 nm

3 0
3 years ago
If the car’s speed decreases at a constant rate from 64 mi/h to 30 mi/h in 3.0 s, what is the magnitude of its acceleration, ass
mixas84 [53]

Answer:3.874 m/s^2

Explanation:

Given

Car speed decreases at a constant rate from 64 mi/h to 30 mi/h

in 3 sec

60mi/h \approx 26.8224m/s

34mi/h \approx 15.1994 m/s

we know acceleration is given by =\frac{velocity}{Time}

a=\frac{15.1994-26.8224}{3}

a=-3.874 m/s^2

negative indicates that it is stopping the car

Distance traveled

v^2-u^2=2as

\left ( 15.1994\right )^2-\left ( 26.8224\right )^2=2\left ( -3.874\right )s

s=\frac{488.419}{2\times 3.874}

s=63.038 m

7 0
3 years ago
A person wants to fire a water balloon cannon such that it hits a target 100m100m away. if the cannon can only be launched at 45
vladimir2022 [97]
<span>31.3 m/s Since the water balloon is being launched at a 45 degree angle, the horizontal and vertical speeds will be identical. Also the time the balloon takes to reach its peak altitude will match the time it takes to fall. So let's create a few expressions about what we know. Distance the water balloon travels at velocity v for time t d = vt Total time required for the entire trip is double since the balloon goes up, then goes down t = 2v/a Now let's plug in the numbers we have, assuming the acceleration due to gravity is 9.8 m/s^2 t = 2v/9.8 100 = vt Substitute 2v/9.8 for t in the 2nd formula 100 = v(2v/9.8) Solve for v. 100 = v(2v/9.8) 100 = 2v^2/9.8 980. = 2v^2 490 = v^2 22.13594 = v So we now know that both the horizontal velocity and vertical velocity needed is 22.13594 m/s. Let's verify that 2*22.13594 / 9.8 = 4.51754 So it will take 4.51754 second for the balloon to hit the ground after being launched. 4.51754 * 22.13594 = 100 And during that time it will travel 100 meters horizontally. But we need to know the total velocity. And the Pythagorean theorem comes to the rescue. Just square the 2 velocities, add them together, and take the square root. We already know the square is 490 from the work above, so sqrt(490+490) = sqrt(980) = 31.30495 m/s</span>
3 0
3 years ago
Please help This very important for me you will get 40 points if you help me and explain in deatil please.
posledela
Well, I think mostly it is oceanic crust well because <span>The scientist noticed a symmetrical pattern of positive and negative magnetic lines as they moved along the ocean floor, and the line of symmetry was at the mid-ocean ridge. that why it is seen as the youngest on our earth</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the following correct way to write 2,330,000 in scientific notation
    15·2 answers
  • In a nuclear power plant, a special fuel called radioactive uranium is used to generate heat and produce steam. True False
    15·1 answer
  • A 22 kg sled is pushed for 5.2 m with a horizontal force of 20 N, starting from rest. ignore friction. find the final speed of t
    12·1 answer
  • A car accelerates in the +x direction from rest with a constant acceleration of a1 = 1.62 m/s2 for t1 = 20 s. At that point the
    15·1 answer
  • I NEED ANSWERS QUICK
    11·2 answers
  • Will you travel in 3.0 minutes running at a rate of 6.0 m/s
    15·1 answer
  • (28 points) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of ra
    13·1 answer
  • Earth orbits the sun once every 365.25 days. Find the average angular speed of earth about the sun. Answer in units of rad/s.
    12·1 answer
  • A car of mass 2 320 kg is descending a sloping road, inclined at 10.0° to the horizontal. The driver sees a hazard and brakes to
    10·1 answer
  • vector ????⃗ has a magnitude of 17.9 and its direction is 80∘ counter‑clockwise from the x- axis. what are the x- and y- compone
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!