Answer:
d = 0.076 mm
Explanation:
Given data
diffraction pattern d1 = 0.19 mm = 0.019 cm
separated s(1) = 1.8 cm
separated s(2) = 4.5 cm
to find out
d2 for an unknown
solution
we know here that spacing in between the diffraction fringe is always inversely proportional to diffraction grating so
we will apply here formula for unknown d that is
d1 (s1 / L) = d2 (s2 /L)
d2 = d1 × s(1) / s(2)
put here all thes evalue we get d2
d2 = d1 × s(1) / s(2)
d2 = 0.019 × 1.8 / 4.5
d2 = 0.0076 cm
d2 = 0.076 mm
450 g =0.9921 lb I hope this helps you out.
Answer:
In an elastic collision, the total kinetic energy is conserved, while in an inelastic collision, it is not
Explanation:
Let's define the two types of collision:
- Elastic collision: an elastic collision is a collision in which:
1) the total momentum of the system is conserved
2) the total kinetic energy of the system is conserved
Typically, elastic collisions occur when there are no frictional forces acting on the objects in the system, so that no kinetic energy is lost into thermal energy. An example of elastic collision is the collision between biliard balls.
- Inelastic collision: an inelastic collision is a collision in which:
1 ) the total momentum of the system is conserved
2) the total kinetic energy of the system is NOT conserved
In an elastic collision, part of the total kinetic energy is lost (=converted into thermal energy) due to the presence of frictional forces. An example of inelastic collision is the accident between two cars, in which part of the energy is converted into heat.
Answer:
The cost of energy is $ 0.34.
Explanation:
The energy is the capacity to do work.
The energy is a scalar quantity and its SI unit is Joule.
The commercial unit of energy is kWh.
Cost of 1 kWh energy = $ 0.17
energy loss by standard window is 2 kWh .
So, the cost of lost of energy is
Cost = $ 0.17 x 2 = $ 0.34
Answer:
An object is in motion if it changes position relative to a reference point.
Explanation: