<h3>pressure = force / area</h3>
<h3>force = 84 N</h3><h3>pressure = 6 × 10 - 5 = 55 m2</h3>
<h3>pressure = 84 / 55</h3>
<h3>pressure = 1.53 pascals</h3>
hope that helps and please tell me if i am wrong :)
<span>The runner is moving by uniformly accelerated motion, starting from rest (so, his initial velocity is zero). The law of motion of the runner is
</span>

<span>
where x(t) is the distance covered after time t, and a is the acceleration of the runner. By re-arranging the formula, we get
</span>

<span>
We know the runner has covered a distance of S=12m in t=4.0 s, and if we plug these numbers into the equation, we find the acceleration of the runner:
</span>

<span>
</span>
Democritus was the one who did not have experimental evidence to support his theory of the atom.
Answer: Option 4
<u>Explanation:
</u>
The discovery of atoms were first stated by Democritus but due to the absence of any experimental proof, his statement was not noted as significant at that time.
After this, Dalton made the specific assumptions formulating some postulates for the atomic theory with proof. Then the cathode rays tube experiments performed by Thomson lead to the formation of plum pudding models of atom.
This is followed by Rutherford’s gold foil experiment discovering the presence of nucleus inside the atoms. So, Democritus first stated but due to absence of experimental evidences, his theory of atoms were not supported at that time.
<h2>Answer: remain stationary</h2>
Stationary waves (so called because they seem to be immobile) occur when two waves interfere with the <u>same frequency, amplitude but with different direction</u>, along a line with a phase difference of half wavelength.
In this kind of waves there are two types of points:
The nodes, which are points that remain motionless or stationary and do not vibrate. They are due to the destructive interference of both waves when they meet.
The antinodes, which are points that vibrate with a maximum vibration amplitude. They are due to the non-destructive interference of both waves.
According to this explanation and comparing it with the description, when this two waves pass through each other, the point P will become a node, hence<u> it will remain stationary</u>.