C) Thermal energy. Your body turns the mechanical energy into thermal energy.
It is important for scientists to be repeatable so it lets them see patterns and trends in their results. This is affirmative for their work, making it stronger and better able to support their claims. This helps maintain integrity of data.
Answer:
The new volume is 1.62 L
Explanation:
Boyle's law says:
"The volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure." It is expressed mathematically as:
Pressure * Volume = constant
o P * V = k
Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the gas pressure increases. And when the temperature is decreased, the gas pressure decreases. So this law indicates that the quotient between pressure and temperature is constant.
Gay-Lussac's law can be expressed mathematically as follows:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law.

Having an initial state 1 and a final state 2 it is possible to say that:

Standard temperature and pressure (STP) indicate pressure conditions P = 1 atm and temperature T = 0 ° C = 273 ° K. Then:
- P1= 1 atm
- V1= 1.2 L
- T1= 273 °K
- P2= 0.80 atm
- V2= ?
- T2= 21°C= 294 °K
Replacing:

Solving:

V2= 1.62 L
<u><em>The new volume is 1.62 L</em></u>
<u><em></em></u>
Answer: The distance is slightly less than 3.5 m
Explanation: assuming wall and target are the same thing, and the bullet has constant velocity, the bullet will travel 7 m in half a second, so half that distance is 3.5 m.
In reality, the bullet is decelerating (at an unknown rate) so the distance is slightly less than 3.5 m.
There is also a vertical velocity component, which means it hits the target/wall at an angle. The trajectory is such that it hits the wall above the shooter because the ricochet hits at ~the level at which it left the firearm.
If the wall was absent, the bullet would have described a parabola which brough it back to the initial level after 7m. This could be calculated, but it means that the actual distance between the shooter and the wall is slightly less than 3.5 m
In addition, the collision with the wall is not 100% elastic, so the velocity aftercthe ricochetvis further reduced.
A calculation would be complex because these confounding factors are not completely independent of each other, but all reduce the average velocity and therefore the distance.
Therefore it is only possible to say that the distance was somewhat less than 3.5 m