A. It absorbs energy.
reactants are located on the left side of the equation, meaning energy among with other reactants were needed to get the reaction going, so it absorbed energy, which is also the endothermic process. The opposite of that would be having energy on the right side with the products which means that the reaction would've released energy which is the exothermic process. Hope this helps!
Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar
<h3><u>Answer;</u></h3>
<em><u> = 48,828.125 mi/hr²</u></em>
<h3><u>Explanation and solution</u>;</h3>
- <em><u>Centripetal acceleration is the rate of change of angular velocity. Centripetal acceleration occurs towards the center of the circular path along the radius of the circular path</u></em>.
- Centripetal acceleration is given by; <em>V²/r ; </em>
<em>V = 125 mi/h and r = 0.320 miles </em>
- <em>Thus; centripetal acceleration = 125²/0.320 </em>
=15625/0.320
<em><u> = 48,828.125 mi/hr²</u></em>
Answer:
In a chemical equation, chemicals that react are the reactants, while chemicals that are produced are the products/by products. Both sides of the equation must be balanced.
\
Explanation
When writing a chemical equation, reactants reacts to produce products. For example in the equation for formation of water, hydrogen combines with oxygen as 2H₂ +O₂→2H₂O where the first part before the arrow represent the reactants and the next part after the arrow are the products. Reactants are on the left where as products are on the right.Coefficient 2, in this cases is used for balancing the equation
Answer:
HCO₂/H₂O is not the acid-base conjugate pair.
Explanation:
<em>Acid and conjugate base pairs differ by an H+ ion.</em>
Neither HCO₂ nor H₂O has lost or gained protons.
The conjugate acid of H₂O is H₃O⁺
The conjugate base of HCO₃⁻ is CO₃²⁻
[A conjugate acid has one more H⁺ than its base]