1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ipatiy [6.2K]
3 years ago
8

A nasa spacecraft measures the rate r of at which atmospheric pressure on mars decreases with altitude. the result at a certain

altitude is: =r0.0421·kpakm−1 convert r to ·jcm−4 .
Physics
2 answers:
Pie3 years ago
4 0
<span>this is simple question of conversion of unit But as we can see here that one is in kpa or kilo pascal which is a unit of pressure while another is in joule which is unit of energy but if we do the dimension matching we could see that 1pa = 1J/m^3 and 0.0421kpa/km=0.0421pa/m now putting above equation as substitution 0.0421pa/m=0.0421J/m^4 100 cm = 1 m putting it we get R= 4.21Ă—10^-10 J/cm^4</span>
Lesechka [4]3 years ago
3 0

Answer:4.21 \times 10^{-10} J/cm^4

1 kPa= 10^3 Pa

1 km=10^5 cm

1kPa/km=0.01 Pa/cm

1kPa/km=10^{-8} J/cm^4

\Rightarrow r= 0.0421 kPa/km= 0.0421 kPa/km \times \frac{10^{-8} J/cm^4}{1 kPa/km}= 0.0421 \times 10^{-8}J/cm^4=4.21 \times 10^{-10} J/cm^4

You might be interested in
Ionic bonds form between what
AysviL [449]
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal.
4 0
3 years ago
Fatima is watching her pet cat, Winter, napping in the sun. Fatima is curious about the heart rate of Winter when she is napping
svetoff [14.1K]

Answer:

Explanation:

There are two hypotheses she could test:

A cat's heart rate changes while it is napping.

A cat's heart rate does not change while it is napping.

3 0
3 years ago
Read 2 more answers
Anyone tell me what is the physics​
Katyanochek1 [597]

Answer:

physic is branch of science in which math is its brother and will deal with the equation,law and evidence of natural phenomenon.

6 0
3 years ago
What is the net force on a 50-newton weight hanging on a string tied to the ceiling?
Lady bird [3.3K]
The net force on the hanging object is zero. If it were not zero, then the object would be accelerating in some direction.
4 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • WHAT are the highest frequency and the lowest frequency pets of the EM spectrum?
    10·1 answer
  • Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th
    11·1 answer
  • A person standing on the edge of a high cliff throws a rock straight up with an initial velocity, v0v0, of 13.0m/s13.0m/s. on th
    11·1 answer
  • Which statement is true for the hang time of a projectile?
    6·1 answer
  • An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,
    13·1 answer
  • The captain told the passengers that the plane is flying at 450 miles per hour. This information describes the plane's
    12·1 answer
  • They enjoy being alone for quit small time​
    15·1 answer
  • You are out on a hike, and you notice that the line of telephone wires you have been following along a slope is crooked. Two of
    6·2 answers
  • Which of the following best demonstrates Newton's Third Law?
    7·2 answers
  • To make them gas, you have to give liquids yes or no?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!