Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input
Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
By looking at the potential energies before and after the reaction, we can tell that the reaction is exothermic (final < initial) or endodermic (final > initial).
Also, the amount of activation energy gives an idea of the external energy required to initiate the reaction (for example, by heating the reactants).
Furthermore, by the same principle, we can also deduce the activation energy for the reverse reaction.
If a catalyst is available, the diagram will show a reduced activation energy, compared to a reaction without catalyst. However, it will also show that the catalyst does not alter the initial and final energies of the reaction.
Answer:
a) v1 = 5.52m/s
b) v2 = -1.52m/s
c) v3 = 4.62m/s
d) vt = 3.85m/s
Explanation:
The velocity of the football wide receiver is his displacement per unit time.
Velocity v = (displacement d)/time t
v = d/t .....1
For each of the cases, equation 1 would be used to calculate the velocity.
a) v1 = d1/t1
d1= 16m
t1 = 2.9s
v1 = 16m/2.9s
v1 = 5.52m/s
b) v2 = d2/t2
d2 = -2.5m
t2 = 1.65s
v2 = -2.5/1.65
v2 = -1.52m/s
c) v3 = d3/t3
d3 = 24m
t3 = 5.2s
v3 = 24/5.2
v3 = 4.62m/s
d) vt = dt/tt
dt = 16m - 2.5m + 24m = 37.5m
tt = 2.9 + 1.65 + 5.2 = 9.75s
vt = 37.5/9.75
vt = 3.85m/s
First question: 800J
Second question: 20.4m
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,
So, the final velocity of the bullet is 9 m/s.