Answer:
Using lighter material in car construction, improving energy efficiency by enhancing engine design or replacing the engine with more efficient technologies.
Explanation:
Using lighter materials in the car construction, reducing the potential energy required to accelerate and to move the car, as well as energy losses due to rolling friction. There is evidence of such benefits by replacing steel and aluminium parts with components made of composite materials.
Improving the design of internal combustion engines to minimize energy losses and accordingly, improving energy efficiency. A more radical approach is replacing internal combustion engines with electric engines, which offer higher efficiencies. Such conclusions can be easily inferred from model based on Work-Energy Theorem and Principle of Energy Conservation:

Answer:
The correct answer is d
Explanation:
In this exercise they ask us which statement is correct, for this we plan the solution of the problem, this is a Doppler effect problem, it is the frequency change due to the relative speed between the emitter and the receiver of sound.
The expression for the Doppler effect of a moving source is
f ’= (v / (v- + v_s) f
From this expression we see that if the speed the sound source is different from zero feels a change in the frequency.
The correct answer is d
They expend more oxygen. Littler endotherms lose warmth to the earth proportionately speedier than huge endotherms: less warm mass, protecting layers in littler creatures are less successful by dint of being more slender, and more prominent surface region to volume proportion implies snappier radiation of warmth
Some rewards are 2.33 miles in a hour so you have to move in 700 degrees to get the system moving faster soo 700+ 2.33 divide by 3
Answer:
Given:
Thermal Kinetic Energy of an electron, 
= Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron,
:

(1)
where
h = Planck's constant = 
= momentum of an electron
= velocity of an electron
= mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy



(2)
Using eqn (2) in (1):

Now, to calculate the de-Broglie wavelength of proton,
:

(3)
where
= mass of proton
= velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy



(4)
Using eqn (4) in (3):
