Answer - B. Betelguese.
I really hope this helps!!
Answer:
b) 1. Iron, silicates, carbon
2. Water
3. Methane, Ammonia, Carbon Dioxide.
Explanation:
Protoplanetry disk is the disk of gases and clouds of dust that rotates around the newly made star. The temperature of the protoplanetry disk actually determines the type of the planet that is to be formed. Inner part of the protoplanetry disk is closer to the sun thats why it is the hottest and denser part and composed of the materials like Iron, silicates, carbon as they have high melting points. Then comes those materials that exist in the solid form at lower temperatures such as the volatile materials like water. Ater that the protoplanetry disk is made of highly volatile materials that exists in solid from only at low coldest temperatures. So the outer part of the protoplanetry disk is made up of the Methane, Ammonia and Carbon Dioxide.
Answer:
The heat transferred into the system is 183.5 J.
Explanation:
The first law of thermodynamics relates the heat transfer into or out of a system to the change of internal and the work done on the system, through the following equations.
ΔU = Q - W
where;
ΔU is the change in internal energy
Q is the heat transfer into the system
W is the work done by the system
Given;
ΔU = 155 J
W = 28.5 J
Q = ?
155 = Q - 28.5
Q = 155 + 28.5
Q = 183.5 J
Therefore, the heat transferred into the system is 183.5 J.
Average velocity is a vector unit (i.e. includes magnitude <em>and </em>direction) calculated by working out distance ÷ time:
80 metres ÷ 20 seconds = 4 metres/seconds (m/s)
Therefore, your final answer is C. 4 m/s south.
Answer:
xf = 5.68 × 10³ m
yf = 8.57 × 10³ m
Explanation:
given data
vi = 290 m/s
θ = 57.0°
t = 36.0 s
solution
firsa we get here origin (0,0) to where the shell is launched
xi = 0 yi = 0
xf = ? yf = ?
vxi = vicosθ vyi = visinθ
ax = 0 ay = −9.8 m/s
now we solve x motion: that is
xf = xi + vxi × t + 0.5 × ax × t² ............1
simplfy it we get
xf = 0 + vicosθ × t + 0
put here value and we get
xf = 0 + (290 m/s) cos(57) (36.0 s)
xf = 5.68 × 10³ m
and
now we solve for y motion: that is
yf = yi + vyi × t + 0.5 × ay × t
² ............2
put here value and we get
yf = 0 + (290 m/s) × sin(57) × (36.0 s) + 0.5 × (−9.8 m/s2) × (36.0 s) ²
yf = 8.57 × 10³ m