The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>
Image #3 good luck!!!!!!!!!!!
Personal space differs from culture to culture, though it is widely acknowledged that Europe and U.S have bigger personal space requirements that their counterparts in Asia.
Hakeem might not realize it but it’s commonly accepted for Americans to have a distance between four to twelve feet between one another in social settings, especially in professional ones. A distance of two feet is only acceptable if the individual is part of the person’s inner circle, such as friends and family.
A shorter electromagnetic wave is hotter.
A shorter electromagnetic wave produce heat hotter than ultraviolet rays. Because it produces both gamma rays and ultraviolet rays that makes it hotter that the heat of the sun.