Answer:
3.21
Explanation:
The relation between frequency and wavelength is shown below as:
c is the speed of light having value
Given, Frequency = 93.5 MHz =
Thus, Wavelength is:
<u>Answer - A.</u>
I know it, X-rays<span>, </span>gamma rays<span> and beta particles are all </span>used<span> in medicine to treat internal organs. X-</span>rays<span> are produced by firing electrons at a metal target and </span>gamma rays<span> are emitted by the nucleus of radioactive atoms. </span>Gamma rays<span> are </span>used<span> to kill cancer cells, to sterilise medical equipment and in radioactive tracers.</span>
Answer:
i hope it helps you please mark me as brainliest
Explanation:
Molecular theory of magnetism states, "If molecular magnets align in a row, then the substance exhibits magnetic property. If they are kept haphazardly, they do not exhibit magnetic property." This is the molecular theory of magnetism. If molecular magnets align in a row, then the substance exhibits magnetic property.
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.