1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
2 years ago
14

Give me some pointers please, I need to finish this ASAP-

Physics
1 answer:
Vinil7 [7]2 years ago
3 0
Stop cheating learn from ur resources
You might be interested in
The force exerted on the tires of a car that directly accelerate it along a road is exerted by the
azamat

The force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.

<h3>What is force?</h3>

Force is defined as the product of mass and acceleration of an object.

Friction is defined as the force that resists the movement of an object over another.

Therefore, the force exerted on the tires of a car that directly accelerate it along a road is exerted by the road friction.

Learn more about force here:

brainly.com/question/12970081

#SPJ12

7 0
1 year ago
A car battery with a 12 V emf and an internal resistance of 0.11 Ω is being charged with a current of 56 A. What are (a) the pot
denpristay [2]

Answer:

Part a)

V = 18.16 V

Part b)

P_r = 345 Watt

Part c)

P = 672 Watt

Part d)

V = 5.84 V

Part e)

P_r = 345 Watt

Explanation:

Part a)

When battery is in charging mode

then the potential difference at the terminal of the cell is more than its EMF and it is given as

\Delta V = E + i r

here we have

E = 12 V

i = 56 A

r = 0.11

now we have

\Delta V = 12 + (0.11)(56) = 18.16 V

Part b)

Rate of energy dissipation inside the battery is the energy across internal resistance

so it is given as

P_r = i^2 r

P_r = 56^2 (0.11)

P_r = 345 W

Part c)

Rate of energy conversion into EMF is given as

P_{emf} = i E

P_{emf} = (56)(12)

P_{emf} = 672 Watt

Now battery is giving current to other circuit so now it is discharging

now we have

Part d)

V = E - i r

V = 12 - (56)(0.11)

V = 12 - 6.16 = 5.84 V

Part e)

now the rate of energy dissipation is given as

P_r = i^2 r

P_r = 56^2 (0.11)

P_r = 345 W

7 0
3 years ago
Why would an atomic nucleus give off a particle?
zmey [24]
To make the nucleus more stable 

5 0
2 years ago
Read 2 more answers
Bob is pushing a box across the floor at a constant speed of 1.5 m/s, applying a horizontal force whose magnitude is 60 n. alice
earnstyle [38]

120n

since the speed is doubled, her force is doubled

7 0
3 years ago
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
Other questions:
  • PLZ HELP ME ASAP 30 POINTS
    6·1 answer
  • A 3.5 V battery is connected to a wire with a resistance of 2.5 Ohms. Use Ohm's law to calculate the current for this wire
    14·2 answers
  • After the fission of U-235 takes place, how many neutrons does the missing nucleus have?
    7·2 answers
  • The what is s measure of the number of waves that pass a point in a given amount of time
    5·2 answers
  • A large truck collides head-on with a small car. The car is severely damaged as a result of the collision. According to Newton's
    12·1 answer
  • What happens to the mass of a metal ball if its heated?
    12·2 answers
  • As you drive away from a radio transmitter, the radio signal you receive from the station is shifted to longer wavelengths. (T/F
    9·1 answer
  • The gravitational force between two asteroids is 100N. What would the force be if the distance between the asteroids was cut in
    8·1 answer
  • A solid nonconducting sphere of radius R carries a charge Q distributed uniformly throughout its volume. At a certain distance r
    6·1 answer
  • Help!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!