Answer:65.4 meters= 65400 millimeters
Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />
I think you want to ask about Keq. At equilibrium, we can know [SO2Cl2] is 2.2*10-2 M -1.3*10-2M=9*10^-3 M. And [SO2]=[Cl2]. So the Keq=1.88*10^-2.
1. The third option is the least soluble in water because it is the chain with the most number of hydrocarbons. Next is the second option while the first one is the most soluble.
2. Statements 1 and 2 are true. The third option is not true all the time because it depends on the structure of the compound.
Answer:
The method is accurate in the calculation of the 
Explanation:
As a first step we have to calculate the <u>average concentration </u>of
find it by the method.

Then we have to find the<u> standard deviation:</u>

For the confidence interval we have to use the formula:
μ=Average±
Where:
t=t student constant with 95 % of confidence and 5 data=2.78
μ=
± 
upper limit: 0.84
lower limit: 0.75
If we compare the limits of the value obtanied by the method (Figure 1 Red line) with the reference material (Figure 1 blue line) we can see that the values obtained by the method are within the values suggested by the reference material. So, it's method is accurate.