Electron;Neutron is the correct answer.
Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
= magnitude of current
magnitude of current is given as


= 1.87 A
The amount of movement, linear momentum, momentum or momentum is a physical quantity derived from a vector type that describes the movement of a body in any mechanical theory. In classical mechanics, the amount of movement is defined as the product of body mass and its velocity at a given time.
p= mv
Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the momentum is 
Answer: v = 880m/s
Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as
L = λ/2 where L = length of string and λ = wavelength.
But L = 1m
1 = λ/2
λ = 2m.
But the frequency at fundamental is 440Hz and
V = fλ
Hence
v = 440 * 2
v = 880m/s
Answer:
E) 80 N/m
Explanation:
Given;
mass of the block, m = 4.8 kg
displacement of the block, x = -0.5 m
velocity of the block, v = -0.8 m/s
acceleration of the block, a = 8.3 m/s²
From Newton's second law of motion;
F = ma
Also, from Hook's law;
F = -Kx
where;
k is the force constant
Thus, ma = -kx
k = -ma/x
k = -(4.8 x 8.3) / (-0.5)
k = 79.7 N/m
k ≅ 80 N/m
Therefore, the force constant of the spring is closest to 80 N/m