An atom is probably less than 1 nano-meter in size
        
                    
             
        
        
        
Answer:
support lights as a wave
Explanation:
In the model of light as a particle, the experimenter would expect to see one small hole of light emerging on the wall. However, as the light spreads out, it behaves much like a wave that diffracts when going through a small hole.
 
        
             
        
        
        
Answer:
0.532
Explanation:
Your equation to find the second bright interference maximum is gonna be this: d sin (Θ) = m λ
First, find your variables.
λ = 580 · 10^-9
d = 0.000125
m = 2
Next, fill in the equation.
d sin (θ) = m λ
(0.000125) sin (θ) = (2) (580·10^-9)
Then isolate your variable.
θ = arcsin ( (2)(580·10^-9) / (0.000125) )
Run your equation and you will end up with 0.53171246 , which rounds to 0.532.
The main thing you have to watch out for is make sure you are calculating for the bright interference and not the dark interference, as well as checking you're calculating for the maximum, not the minimum.
I hope this helps :D
 
        
             
        
        
        
What is happening to this sound is that it’s vibrating over and over.