Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s
Answer:
Phase Difference
Explanation:
When the sound waves have same wavelength, frequency and amplitude we just need the phase difference between them at a particular location to determine whether the waves are in constructive interference or destructive interference.
Interference is a phenomenon in which there is superposition of two coherent waves at a particular location in the medium of propagation.
When the waves are in constructive interference then we get a resultant wave of maximum amplitude and vice-versa in case of destructive interference.
- For constructive interference the waves must have either no phase difference or a phase difference of nλ, where n is any natural number.
- For destructive interference the waves must have a phase difference of n×0.5λ, where n is any odd number.
Percent error is the difference between the experimental value and theoretical value and measures the accuracy of the result found. The larger the error, lesser is the accuracy and vice versa.
Solution:
It is a mathematical way of showing accuracy
The higher the percent error, the less accurate the data set,
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>