The rate law equation for Ozone reaction
r=k[O][O₂]
<h3>Further e
xplanation</h3>
Given
Reaction of Ozone :.
O(g) + O2(g) → O3(g)
Required
the rate law equation
Solution
The rate law is a chemical equation that shows the relationship between reaction rate and the concentration / pressure of the reactants
For reaction
aA + bB ⇒ C + D
The rate law can be formulated:
![\large{\boxed{\boxed{\bold{r~=~k.[A]^a[B]^b}}}](https://tex.z-dn.net/?f=%5Clarge%7B%5Cboxed%7B%5Cboxed%7B%5Cbold%7Br~%3D~k.%5BA%5D%5Ea%5BB%5D%5Eb%7D%7D%7D)
where
r = reaction rate, M / s
k = constant, mol¹⁻⁽ᵃ⁺ᵇ⁾. L⁽ᵃ⁺ᵇ⁾⁻¹. S⁻¹
a = reaction order to A
b = reaction order to B
[A] = [B] = concentration of substances
So for Ozone reaction, the rate law (first orde for both O and O₂) :
![\tt \boxed{\bold{r=k[O][O_2]}}](https://tex.z-dn.net/?f=%5Ctt%20%5Cboxed%7B%5Cbold%7Br%3Dk%5BO%5D%5BO_2%5D%7D%7D)
Answer: The rate of appearance of
is 
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{1d[I^-]}{5dt}=+\frac{d[I_2]}{3dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1d%5BI%5E-%5D%7D%7B5dt%7D%3D%2B%5Cfrac%7Bd%5BI_2%5D%7D%7B3dt%7D)
Given:
= 
![+\frac{d[I_2]}{dt}=-\frac{3d[I^-]}{5dt}=-\frac{3}{5}\times 2.4\times 10^{-3}mol/Ls=1.44\times 10^{-3}mol/Ls](https://tex.z-dn.net/?f=%2B%5Cfrac%7Bd%5BI_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B3d%5BI%5E-%5D%7D%7B5dt%7D%3D-%5Cfrac%7B3%7D%7B5%7D%5Ctimes%202.4%5Ctimes%2010%5E%7B-3%7Dmol%2FLs%3D1.44%5Ctimes%2010%5E%7B-3%7Dmol%2FLs)
The rate of appearance of
is 