Answer:
<h2>
m/s ^2</h2><h2 />
Explanation:
Solution,
When a certain object comes in motion from rest, in the case, initial velocity = 0 m/s
Initial velocity ( u ) = 0 m/s
Final velocity ( v ) = 72 km/h ( Given)
We have to convert 72 km /h in m/s


m/s
Final velocity ( v ) = 20 m/s
Time taken ( t ) = 2 seconds
Acceleration (a) = ?
Now,
we have,



m/s ^2
Hope this helps...
Good luck on your assignment..
Answer:
53.64 m/s
Explanation:
Applying,
a = (v-u)/t............. Equation 1
Where a = acceleration of the car, v = final velocity of the car, u = initial velocity of the car, t = time.
make u the subject of the equation
u = v-at............. Equation 2
From the question,
Given: a = -12 mph/s = -5.364 m/s², t = 10 seconds, v = 0 m/s (comes to stop)
Substitute these values into equation 2
u = 0-(-5.364×10)
u = 0+53.64
u = 53.64 m/s
Acceleration due to gravity
Answer:
Explanation:
Kinetic Energy = 0.5(Mass)(Velocity2)
Kinetic energy= 0.5 × 10kg × (50m/s)2
Kinetic Energy = 5kg × 2500m/s
Kinetic energy = 125000 J ( Ans)
Explanation:
It is given that,
Let Charge of
is taken from points A & B such that
.
We need to find the energy of charge. Electric potential is defined as the work done per unit of electric charge. So,

So, the energy of charge decreases by
. Hence, the correct option is (a).