Answer: i) 2.356 × 10^-3 m = 2.356mm, ii) 4.712 × 10^-3 m = 4.712mm
Explanation: The formulae that relates the position of a fringe from the center to the wavelength, distance between slits and distance between slits and screen is given below as
y = R×(mλ/d)
Where y = distance between nth fringes and the center fringe.
m = order of fringe
λ = wavelength of light = 589nm = 589×10^-9m
R = distance between slits and screen = 1.0m
d = distance between slits = 0.25mm = 0.00025m
For distance between the first dark fringe and the center fringe.
This implies that m = 1
y = 1 × 589×10^-9 × 1/0.00025
y = 589×10^-9/0.00025
y = 2,356,000 × 10^-9
y = 2.356 × 10^-3 m = 2.356mm
For the second dark fringe, this implies that m = 2
y = 1 × 2 × 589×10^-9/0.00025
y = 1178 × 10^-9 /0.00025
y = 4,712,000 × 10^-9
y = 4.712 × 10^-3 m = 4.712mm
Answer:
I think it's C I'm so sorry if I'm wrong.
Explanation:
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then
