Well, the diameter of a circle is simply a length, so your measurement will have units of length. We just have to find an answer that has only units of length.
A). gram, second . . . mass and time. That can't be it.
B). kilogram, ampere . . . mass and current. That can't be it.
C). centimeter, meter . . . both lengths. This one is looking good.
D). candela, mole . . . light intensity and some chemical thing. That can't be it.
So it can't be anything else on this list but <em>C</em> .
Any of three muscles in each buttock that move the thigh, the largest of which is the gluteus maximus.
Is it just me or can anyone else not see a graph? (Because I can’t)
Answer:

Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy = 
now we know that


now for the space station will be same as above force




Answer:
625 W
Explanation:
Applying
P = W/t.................... Equation 1
Where p = power, W = Work, t = time
But,
W = Force (F) × distance (d)
W = Fd........................ Equation 2
Substitute equation 2 into equation 1
P = Fd/t.................... Equation 3
From the question,
Given: F = 5000 N, d = 30 m, t = 4 munites = (4×60) seconds = 240 seconds
Substitute these values into equation 3
P = (5000×30)/240
P = 625 Watt