Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg
Answer:
a) 6.1 m
b) 4.6 s
c) 1.326 m/s
d) 0.325 m
Explanation:
a) The wave length is the distance between 2 crests λ = 6.1m
b) The period of the wave is the time it takes from the lowest point to the next lowest point, which is twice the time it takes from the lowest point to the highest point = 2*2.3 = 4.6 s
c) The speed of the wave is the distance per unit of time, or wave length over period = 6.1 / 4.6 = 1.326 m/s
d)The amplitude A is half the distance from the highest point to the lowest point = 0.65 / 2 = 0.325 m
Crushing pressure. Human bodies are used to air pressure. The air pressure in our lungs, ears and stomachs is the same as the air pressure outside of our bodies, which ensures that we don't get crushed. Our bodies are also flexible enough to cope when the internal and external pressures aren't exactly the same.