Answer:
atomic mass of X is 48.0 amu
Explanation:
Let y be the atomic mass of X
Molar mass of O_2 is = 2×16 = 32 g / mol
X + O2 -----> XO_2
According to the equation ,
y g of X reacts with 32 g of O_2
24 g of X reacts with Z g of O_2
Z = ( 32×24) / y
But given that 24.0 g of X exactly reacts with 16.0 g of O_2
So Z = 16.0
⇒ (32×24) / y = 16.0
⇒ y = (32×24) / 16
y= 48.0
So atomic mass of X is 48.0 amu
Answer:
I also have this question but see the 69 page of ur question book
Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

Answer:
moving object transfers some to the stationary object causing it to move a it. remember that momentum is always conserved though - it is the same at the start before the event and after it.
Explanation: