1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
11

A block of mass m=1kg sliding along a rough horizontal surface is traveling at a speed v0=2m/s when it strikes a massless spring

head-on and compresses the spring a maximum distance X=10cm. If the spring has stiffness constant k=10N/m, determine the coefficient of kinetic friction between block and surface.
Physics
1 answer:
topjm [15]3 years ago
4 0

Here we can use the work energy theorem

W_f + W_s = K_f - K_i

here we know that

K_f = 0

as it come to rest finally

K_i = \frac{1}{2}mv_i^2

K_i = \frac{1}{2}\times 1\times 2^2

K_i = 2 J

now work done by friction force will be given as

W_f = - F_f \times d = -\mu mg d

W_f = - \mu(1)(9.8)(0.10) = - 0.98\mu

Work done by spring force is given as

W_s = \frac{1}{2}k(x_i^2 - x_f^2)

W_s = \frac{1}{2}(10)( 0 - 0.10^2)

W_s = -0.05 J

so now plug in all data above

- 0.05 - \mu(0.98) = 0 - 2

\mu = 1.99

so above is the friction coefficient


You might be interested in
As water changes state,the mass of the sample does not change.the size of the water molecules_______
Mamont248 [21]

Answer:

does not change

Explanation:

7 0
3 years ago
The free-fall acceleration at the surface of planet 1 is 22 m/s^2. The radius and the mass of planet 2 are twice those of planet
algol13

Answer:

g₂ = 11 m/s²

Explanation:

The value of free-fall acceleration on the surface of a planet is given by the following formula:

g = \frac{Gm}{r^2}

where,

g = free-fall acceleration

G = Universal Gravitational Constant

m = mass of the planet

r = radius of planet

FOR PLANET 1:

g_1 = \frac{Gm_1}{r_1^2}\\\\\frac{Gm_1}{r_1^2} = 22 m/s^2 --------------------- equation (1)

FOR PLANET 2:

g_2 = \frac{Gm_2}{r_2^2}\\\\g_2 = \frac{G(2m_1)}{(2r_1)^2}\\\\g_2 = \frac{1}{2}\frac{Gm_1}{r_1^2}\\\\

using equation (1):

g_2 = \frac{g_1}{2}\\\\g_2 = \frac{22\ m/s^2}{2}

<u>g₂ = 11 m/s²</u>

8 0
2 years ago
Work is NOT done by a person when she?
garik1379 [7]

Answer:

I think it is pulling the sled off the ice covered back yard.

5 0
2 years ago
a ball is projected upward at time t = 0.00 s from a point on a roof 70 m above the ground. The ball rises, then falls and strik
grin007 [14]

Answer: 17.68 s

Explanation:

This problem is a good example of Vertical motion, where the main equation for this situation is:  

y=y_{o}+V_{o}t-\frac{1}{2}gt^{2} (1)  

Where:  

y=0 is the height of the ball when it hits the ground  

y_{o}=70 m is the initial height of the ball

V_{o}=82m/s is the initial velocity of the ball  

t is the time when the ball strikes the ground

g=9.8m/s^{2} is the acceleration due to gravity  

Having this clear, let's find t from (1):  

0=70m+(82m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2} (2)  

Rewritting (2):

-\frac{1}{2}(9.8m/s^{2})t^{2}+(82m/s)t+70m=0 (3)  

This is a quadratic equation (also called equation of the second degree) of the form at^{2}+bt+c=0, which can be solved with the following formula:

t=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}  (4)

Where:

a=-\frac{1}{2}(9.8m/s^{2}

b=82m/s

c=70m

Substituting the known values:

t=\frac{-82 \pm \sqrt{82^{2}-4(-\frac{1}{2}(9.8)(70)}}{2a}  (5)

Solving (5) we find the positive result is:

t=17.68 s

7 0
3 years ago
A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
Artist 52 [7]

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

7 0
3 years ago
Other questions:
  • Light with an intensity of 1 kW/m2 falls normally on a surface with an area of 1 cm2 and is completely absorbed. The force of th
    11·1 answer
  • Light travels at 3.0 × 108 m/s in a vacuum and slows to 2.0 × 108 m/s in glass. What is the index of refraction of glass?
    6·2 answers
  • A car driving at 35 m/s hits the brakes and comes to a stop after 7 seconds. What is the acceleration of the car?
    8·1 answer
  • What is the answer need this for tomorrow
    14·1 answer
  • A perfectly conductive plate is placed in the y z-plane. An electromagnetic wave with electric field is incident on the conducto
    8·1 answer
  • A bell is rung. What best describes the density of air around the bell?
    11·2 answers
  • Determine the magnitude of the force for each direction. A. Add the forces that are applied in the same direction. B. Subtract f
    6·1 answer
  • If the motor M rotates in the direction shown by the arrow as illustrated in the diagram below, what is going on? A. 1 and 2 are
    8·1 answer
  • Given the mathematical representation of Coulomb’s Law, , where , describe in words the relationship among electric force, charg
    8·1 answer
  • A track coach measures the 100-meter time of a track athlete. The runner completes the distance in 11.5 seconds. If the stopwatc
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!