Answer:
g₂ = 11 m/s²
Explanation:
The value of free-fall acceleration on the surface of a planet is given by the following formula:

where,
g = free-fall acceleration
G = Universal Gravitational Constant
m = mass of the planet
r = radius of planet
FOR PLANET 1:
--------------------- equation (1)
FOR PLANET 2:

using equation (1):

<u>g₂ = 11 m/s²</u>
Answer:
I think it is pulling the sled off the ice covered back yard.
Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Answer:
Part a)

Part b)

Part c)

Explanation:
As we know that acceleration is rate of change in velocity of the object
So here we know that


Part a)
differentiate x and y two times with respect to time to find the acceleration






Now the acceleration of the object is given as

at t= 1.1 s we have

now the net force of the object is given as



now magnitude of the force will be

Part b)
Direction of the force is given as



Part c)
For velocity of the particle we have




now at t = 1.1 s

now the direction of the velocity is given as


