What best explains the type of energy present in the vibrating atoms of a substance?
The answer is: <u>It is thermal energy, which is a type of kinetic energy. </u>
Answer:
171.34 g/mol
Explanation:
Ba molar mass = 137.328 g/mol
O molar mass = 15.999 g/mol * 2 = 31.9980 g/mol
H molar mass = 1.008 g/mol * 2 = 2.0160 g/mol
137.328 + 31.9980 + 2.0160 = 171.3420 = 171.34 g/mol
The answer should be (A) liquid to solid. This is because it releases the heat absorbed by it when it had changed into liquid.
Density (p) is defined as the mass (m) per unit volume (v) or:
p = m/v
Using this relationship, the volume is:
v = m/p
Using the given values of mass of 80 grams and density of 8 g/cm3, the sample volume is:
v = 80 grams/8 grams/cm3
v = 10 cm3
The final answer is 10 cm3.
Answer:
73.4% is the percent yield
Explanation:
2KClO₃ → 2KCl + 3O₂
This is a decomposition reaction, where 2 moles of potassium chlorate decompose to 2 moles of potassium chloride and 3 moles of oxygen.
We determine the moles of salt: 400 g . 1. mol /122.5g= 3.26 moles of KClO₃
In the theoretical yield of the reaction we say:
2 moles of potassium chlorate can produce 3 moles of oxygen
Therefore, 3.26 moles of salt, may produce (3.26 . 3) /2 = 4.89 moles of O₂
The mass of produced oxygen is: 4.89 mol . 32 g /1mol = 156.6g
But, we have produced 115 g. Let's determine the percent yield of reaction
Percent yield = (Produced yield/Theoretical yield) . 100
(115g / 156.6g) . 100 = 73.4 %