Electrostatic forces between charges depend on the product of
the sizes of the charges, and the distance between them.
We should also mention the item about whether the charges are
both the same sign or opposite signs. That determines whether
the forces will pull them together or push them apart, which is a
pretty significant item.
The magnitude of Alioth ( the brightest star in the big dipper ) is 1.76 and it is about 81 light years distant from Earth.
Let
be the average acceleration over the first 2.46 seconds, and
the average acceleration over the next 6.79 seconds.
At the start, the car has velocity 30.0 m/s, and at the end of the total 9.25 second interval it has velocity 15.2 m/s. Let
be the velocity of the car after the first 2.46 seconds.
By definition of average acceleration, we have


and we're also told that

(or possibly the other way around; I'll consider that case later). We can solve for
in the ratio equation and substitute it into the first average acceleration equation, and in turn we end up with an equation independent of the accelerations:


Now we can solve for
. We find that

In the case that the ratio of accelerations is actually

we would instead have

in which case we would get a velocity of

An equation in x and y for the line tangent to the curve ()=4,()=cos() at the point where =4 is x(t)=2t+2,y(t)=t^4.
<h3>What is tangent?</h3>
In calculation, the digression line to a plane bend at a given point is the straight line that "simply contacts" the bend by then. Leibniz characterized it as the line through a couple of boundlessly close focuses on the bend. The chart of digression is intermittent, implying that it rehashes the same thing endlessly. In contrast to sine and cosine in any case, digression has asymptotes isolating every one of its periods. The space of the digression capability is all genuine numbers with the exception of at whatever point cos(θ)=0, where the digression capability is vague. Assuming they stroll in an orderly fashion, they are fundamentally following a digression way for the shape that is made inside the fencing.
Learn more about tangent, refer:
brainly.com/question/12585907
#SPJ4