Answer:
a) Team A will win.
b) The losing team will accelerate towards the middle line with 0.01 m/
Explanation:
Given that Team-A pulls with a force , 
and Team-B pulls with a force , 
∵ 
The rope will move in the direction of force
.
∴ Team-A will win.
b) Considering both the teams as one system of total mass , 
Net force on the system ,
= 50-45 = 5N
Applying Newtons first law to the system ,
F = ma , where 'a' is the acceleration of the system.
Since , both the teams are connected by the same rope , their acceleration would be the same.
∴ 5 = 499×a
∴ a = 0.01 m/
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
8 ∙ 10^-4 / 2 ∙ 10^2 = (8/2) ∙ ((10^-4)*(10^-2)) = <span>4 ∙ 10^-6</span>
The force of attraction between the opposite charges of the ions in an ionic compound is an ionic bond.
<u>Explanation:</u>
The transfer process of valence electron between atoms referred as ionic bond. This is a kind of chemical bonds which can create two oppositely charged ions. In the presence of ionic bonds, the metal loses electrons and becomes a positive charge cation, while non-metal accepts these electrons and becomes a negative charge anion.
Here, more than 1 electron can be emitted or received to meet the octet principle and the net charge of the compound should be zero. For example: Table salt. In this compound, sodium loses the electron to become
, while the chlorine loses the electron to become
.