Answer: 1477.78 N
Explanation:
Let's assume that the cross sectional area of the smaller piston be A1
let's also assume the cross sectional area of the larger piston be A2
We assume the force applied to the smaller piston be F1
We also assume the force applied to the larger piston be F2
we then use the formula
F1/A1 = F2/A2
From our question,
The radius of the smaller piston is 5 cm = 0.05 m
The radius of the larger piston is 15 cm = 0.15 m
The force of the larger piston is 13300 N
The force of the smaller piston is unknown = F
A1 = πr² = 3.142 * 0.05² = 0.007855 m²
A2 = πr² = 3.142 * 0.15² = 0.070695 m²
F1/0.007855 = 13300/0.070695
F1 = (13300 * 0.007855) / 0.070695
F1 = 104.4715 / 0.070695
F1 = 1477.78 N
Thus, the force the compressed air must exert is 1477.78 N
Vector A is of magnitude 12 m and it makes an angle of 37 degree with Y axis
So here we can say that




Similarly we have




So here we have

option A is correct
Answer:
1. Black absorbs heat and does not bounce the light off. 2. White bounces the light off reducing heat
Answer:
Explanation:
If Tim jogs a distance of 7.2 km to the west and then he turns south and jogs 1.4 km, the resultant displacement of Tim is calculated using the pythagoras theorem as shown;
R² = 7.2²+1.4²
R² = 51.84+1.96
R² = 53.8
R = √53.8
R = 7.33 km
Hence the resultant of Tim's jog back to the beginning is 7.33km
Answer:
(a)
M = 1.898 x 10^27 kg
(b)
v = 13.74 km/s
(c) E = 0.28 N/kg
Explanation:
Time period, T = 3.55 days = 3.55 x 24 x 3600 second = 306720 s
Radius, r = 6.71 x 10^8 m
G = 6.67 x 10^-11 Nm^2/kg^2
(a) 


M = 1.898 x 10^27 kg
(b) Let v be the orbital velocity


v = 13739.5 m/s
v = 13.74 km/s
(b) The gravitational field E is given by


E = 0.28 N/kg