One that can help you is:
ΔT=<span>T<span>Final</span></span>−<span>T<span>Initia<span>l
That is of course adding both tmepratures. There is one more that is a lil bit more complex
</span></span></span><span><span>Tf</span>=<span>Ti</span>−Δ<span>H<span>rxn</span></span>∗<span>n<span>rxn</span></span>/(<span>C<span>p,water</span></span>∗<span>m<span>water</span></span>)
This one is taking into account that yu can find temperature and that there could be a change with a chemical reaction. Hope this helps</span>
The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
Answer:
work done is -150 kJ
Explanation:
given data
volume v1 = 2 m³
pressure p1 = 100 kPa
pressure p2 = 200 kPa
internal energy = 10 kJ
heat is transferred = 150 kJ
solution
we know from 1st law of thermodynamic is
Q = du +W ............1
put here value and we get
-140 = 10 + W
W = -150 kJ
as here work done is -ve so we can say work is being done on system
<h2>Answer: The astronauts are falling at the same rate as the space shuttle as it orbits around earth</h2>
The astronauts seem to float because they are in free fall just like the spacecraft.
However, although they are constantly falling on the Earth, they do not fall because the ship orbits at a sufficient speed (in the same direction of rotation of the Earth) so that the centrifugal force is balanced with the Earth's gravitational pull.
In other words:
The spaccraft and the astronauts are in free fall but the Earth's surface will never be reached as long as they does not decrease the speed.
Then, as they accelerate toward Earth (regardless of their mass), it curves beneath them and never comes close.
That's why astronauts, having the same acceleration as the spacecraft, feel weightless and see themselves floating.
Answer:
the middle
Explanation:
the left one bulb gets power from the outher bulb
the one on right has more bulbs