1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
muminat
3 years ago
7

5. A race car has a mass of 710 kg. It starts from rest and travels 40.0m in 3.0s. The car is uniformly accelerated during the e

ntire time. What net force is acting on the car? 6. Suppose that a 1000 kg car is traveling at 25 m/s (≈55 mph). Its brakes can apply a force of 5000N. What is the minimum distance required for the car to stop? 7. A 65 kg person dives into the water from the 10 m platform. a) What is her speed as she enters the water? b) She comes to a stop 2.0 m below the surface of the water. What net force was exerted on the swimmer? 8. During a head-on collision, a passenger in the front seat of a car accelerates from 13.3 m/s (≈ 30 miles/hour) to rest in 0.10 s. a) What is the acceleration of the passenger? b) The driver of the car holds out his arm to keep his 25 kg child (who is not wearing a seat belt) from smashing into the dashboard. What force must he exert on the child? c) What is the weight of the child? d) Convert these forces from N to pounds. (x 1 lb 4.45N ). What are the chances the driver will be able to stop the child?
Physics
1 answer:
Lana71 [14]3 years ago
5 0

5. 6319 N

First of all, we need to find the acceleration of the car, which can be found by using the equation

S=\frac{1}{2}at^2

where

S = 40.0 m is the distance travelled by the car

t = 3.0 s is the time taken

a is the acceleration

Solving for a, we find

a=\frac{2S}{t^2}=\frac{2(40.0 m)}{(3.0 s)^2}=8.9 m/s^2

So now since we know the mass of the car, m=710 kg, we can find the net force acting on the car:

F=ma=(710 kg)(8.9 m/s^2)=6319 N

6. 62.5 m

In this case, we know the breaking force applied on the car,

F=-5000 N

(with a negative sign since its direction is opposite to the car's motion)

and the mass of the car

m=1000 kg

so we can find its acceleration:

a=\frac{F}{m}=\frac{-5000 N}{1000 kg}=-5 m/s^2

So now we can find the minimum distance to stop by using the equation

v^2-u^2 = 2ad

where in this case we have

v = 0 m/s is the final speed

u = 25 m/s is the initial speed

a = -5 m/s^2 is the acceleration

d is the distance

solving for d,

d=\frac{v^2-u^2}{2a}=\frac{0^2-(25 m/s)^2}{2(-5 m/s^2)}=62.5 m

7a. 14 m/s

We can solve the problem by using the law of conservation of energy: in fact, the initial gravitational potential energy of the person is all converted into kinetic energy as she hits the water below

mgh=\frac{1}{2}mv^2

where

m = 65 kg is the mass of the person

g = 9.8 m/s^2

h = 10 m is the initial height of the diver

v is the final speed as she enters the water

Solving for v, we find

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(10 m)}=14 m/s

7b. -3185 N

We need to find the acceleration of the diver during the motion of 2.0 m below the water:

v^2-u^2 = 2ad

where

v = 0 is the final speed

u = 14 m/s is the initial speed as she enters the water

a is the acceleration

d = 2.0 m is the distance covered

Solving for a,

a=\frac{v^2-u^2}{2d}=\frac{0^2-(14 m/s)^2}{2(2.0 m)}=-49 m/s^2

And so now we can find the net force acting on the diver

F=ma=(65 kg)(-49 m/s^2)=-3185 N

8a. -133 m/s^2

The acceleration of the passenger is given by

a=\frac{v-u}{t}

where

v = 0 m/s is the final speed

u = 13.3 m/s is the initial speed

t = 0.10 s is the time interval

Solving for a, we find

a=\frac{0-13.3 m/s}{0.10 s}=-133 m/s^2

8b. 3325 N

The force that the driver must exert on the child is equal in magnitude to the force experienced by the child during the stop of the car, so

F=ma

where

m = 25 kg is the mass of the child

a=-133 m/s^2 is the acceleration

So, the magnitude of the force will be

F=(25 kg)(133 m/s^2)=3325 N

8c.  245 N

The weight of the child is given by

W=mg

where

m = 25 kg is the child's mass

g = 9.8 m/s^2 is the acceleration due to gravity

Solving the equation,

W=(25 kg)(9.8 m/s^2)=245 N

8d. 55.1 lb

Since we know that

1 lb = 4.45 N

We can find the weight in pounds by setting the following proportion

1 lb : 4.45 N = x : 245 N

Solving for x,

x=\frac{(1 lb)(245 N)}{4.45 N}=55.1 lb

8e. Chances are very low

The force that the driver should exert on the child is

F = 3325 N

This force is equivalent to the force required to lift an object of mass m:

F=mg\\m=\frac{F}{g}=\frac{3325 N}{9.8 m/s^2}=339.3 kg

So, it is equivalent to the force required to lift an object of 339.3 kg, which is quite a lot. therefore, the changes are very low.

You might be interested in
Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals that scientists d
galben [10]
Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals that scientists describe as elliptical. It is one of Kepler's laws. The sun is the focus of all the planets. The correct answer is D.
7 0
3 years ago
What is the speed of a bobsled whose distance-time graph indicates that it traveled 113m in 29s?
Elza [17]
In this item, we are asked to determine the speed of the bobsled given the distance traveled and the time it takes to cover the certain distance. This can mathematically be expressed as,
                          speed = distance / time

Substituting the given values in this item,
                         speed = (113 m) / (29 s)
                         speed = 3.90 m/s

<em>ANSWER: 3.90 m/s</em>
3 0
3 years ago
An atom of arsenic has how many electron-containing orbitals
irina [24]

Answer:

The Arsenic has three electron-containing orbitals. The orbitals s, p and d.

Explanation:

Arsenic is an element with an atomic number equal of 33, it means that it has 33 electrons in its orbitals in the following way:

1s^{2}

2s^{2}

2p^{6}

3s^{2}

3p^{6}

3d^{10}

4s^{2}

4p^{3}

Therefore, the Arsenic has three electron-containing orbitals (s, p d).

8 0
3 years ago
You plan to take a trip to the moon. Since you do not have a traditional spaceship with rockets, you will need to leave the eart
hichkok12 [17]

Answer:

v = 3.5 \times 10^5 m/s

Explanation:

At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon

so we will have

\frac{GM_em}{r^2} = \frac{GM_m}{(d-r)^2}

now we have

\frac{d - r}{r} = \sqrt{\frac{M_m}{M_e}}

\frac{3.844\times 10^8 - r}{r} = \sqrt{\frac{7.36 \times 10^{22}}{5.9742\times 10^{24}}}

so we will have

r = 3.46 \times 10^8 m

Now by energy conservation

-\frac{GM_e}{R_e} - \frac{GM_m}{d - (R_e + R_m)} + \frac{1}{2}v^2 = -\frac{GM_e}{r} - \frac{GM_m}{d - r}

-6.26 \times 10^{8} - 13046 + \frac{1}{2}v^2 = -1.15 \times 10^6 - 1.28 \times 10^5

v = 3.5 \times 10^5 m/s

7 0
3 years ago
The reactive force developed by a jet engine to push an airplane forward is called thrust, and the thrust developed by the engin
finlep [7]

The value of the thrust developed by the engine of a boeing 777 in N and Kgf are ;

i) 376616N

ii) 38430Kgf

<h3>What is force?</h3>

Force is a push or a pull. The reactive force always serve to balance the applied force. We are here asked to convert the  the thrust developed by the engine of a boeing 777 which is about 85400 lbf to the following units;

i) N

ii)kgf

Thus;

1 Ib = 0.45 Kg

1 lbf = 0.45 Kg * 9.8 m/s^2 = 4.41 N

We know that;

1 lbf = 4.41 N

85400 lbf = 85400 lbf. * 4.41 N/1 lbf

= 376616N

Again;

1 lbf = 0.45 Kgf

85400 lbf = 85400 lbf * 0.45 Kgf/1 lbf

= 38430Kgf

Learn more about force:brainly.com/question/13191643

#SPJ1

3 0
1 year ago
Other questions:
  • A hydraulic machine can be used to lift extremely heavy objects. Why is the fluid in the hydraulic machine a liquid rather than
    9·2 answers
  • A positively charged particle initially at rest on the ground accelerates upward to 160 m/s in 2.10 s. The particle has a charge
    6·2 answers
  • A fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 6.55x10-2 kg/s. The density of the gasoline is 740
    11·1 answer
  • Before the positive psychology movement, psychology focused mainly on
    6·2 answers
  • Particles in which state of matter are the most likely to interact with each other to cause a chemical reaction?
    8·1 answer
  • A force of 50 N stretches a string by 4 cm,calculate the elastic constant.
    14·1 answer
  • Wow free poin ts !!!!
    7·2 answers
  • Two balls collide in a head-on elastic collision and rebound in opposite directions. One ball has velocity 1.2 m/s before the co
    10·1 answer
  • Chemistry Sem 2
    9·1 answer
  • If a cannonball is fired horizontally it will not go in a straight line why?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!